References beginning with F
R. Fenn,
Vassiliev theory for knots,
Tr. J. of Math. 18 (1994) 81-101.
R. Fenn, D. Rolfsen and J. Zhu,
Centralisers in the braid group and singular braid monoid,
L'Enseignement Math. 42 (1996).
R. Fenn, C. Rourke, and
B. Sanderson,
James bundles and applications,
University of Sussex and University of Warwick preprint, January 1996.
T. Fiedler,
New invariants in knot theory,
Université Toulouse III preprint no. 172, November 1999.
T. Fiedler,
Global knot theory in
,
preprint, December 2000,
arXiv:math.GT/0012087.
T. Fiedler,
Gauss diagram invariants for knots which are not closed braids,
Université Toulouse III preprint no. 216, May 2001.
T. Fiedler,
Gauss Diagram Invariants for Knots and Links, Kluwer
Academic Publishers, 2001.
T. Fiedler,
One parameter knot theory.
Université Toulouse preprint, November 2002.
Revised: prepublication n. 262, Lab. de math.,
Universite Paul Sabatier, April 2003.
T. Fiedler and A. Stoimenow,
New knot and link invariants,
Humboldt Berlin University preprint, December 1996.
J. M. Figueroa-O'Farrill, T. Kimura and
A. Vaintrob,
The universal Vassiliev invariant for the Lie superalgebra
,
q-alg/9602014 preprint, February 1996.
J. Fine,
Vassiliev theory and regional change,
math.QA/9803004
preprint, December 1996.
V.V.Fock, N.A.Nekrasov, A.A.Rosly, and K.G.Selivanov (1992)
What we think about the higher-dimensional Chern-Simons theories, in
Sakharov Memorial Lectures in Physics. V.1. Commack, NY:
Nova Science Publishers, Inc., 465-471.
L. Freidel,
From sl(2) Kirby weight systems to the asymptotic 3-manifold
invariant,
Penn State University preprint, February 1998. See also
math.QA/9802069
L. Freidel and K. Krasnov,
Spin Foam Models and the Classical Action Principle,
Adv. Theor. Math. Phys. 2 (1999) 1183-1247,
arXiv:hep-th/9807092.
D. Fuchs and S. Tabachnikov,
Invariants of Legendrian and transverse knots in the standard
contact space,
Topology 36-5 (1997) 1025-1053.
L. Funar,
Vassiliev invariants I: braid groups and rational homotopy
theory,
Revue Roumaine Math. Pures Appl., 42 (1997) 245-272,
arXiv:q-alg/9510008.
L. Funar,
On knots having the same Vassiliev invariants up to a certain
degree,
Université de Grenoble I preprint, July 1999.
Sergei DUZHIN
2013-07-04