Serge
N. Gavrilov
Date
of birth: May 27,
1973.
Address:
Institute for Problems in Mechanical
Engineering of Russian Academy of Sciences, Bolshoy pr. V.O., 61,
199178, St. Petersburg, Russia.
E-mail:
serge AT pdmi.ras.ru, serge.gavrilov
AT gmail.com
Keywords
to the fields of interest: rational
mechanics, non-stationary wave propagation, elastodynamics, trapped
modes, lattice dynamics, ballistic thermal conductivity, asymptotics,
configurational forces, dynamics of phase transitions, constitutive
theory.
Affiliation:
Master
thesis: “Mathematical
model of Kelvin's medium” (superviser is
Prof. P.A. Zhilin, Head of Department of Theoretical Mechanics,
Faculty of Physics and Mechanics, SPbSTU), 1996.
PhD
thesis:
“Non-stationary processes in elastic waveguides subjected to a
moving load overcoming the critical velocity” (supervisers are
Prof. D.A. Indeitsev and Prof. P.A.
Zhilin, IPME), 1999.
Habilitation
thesis:
“Non-stationary dynamics of elastic bodies with moving inclusions
and boundaries”, IPME, 2013.
ORCID
profile.
Google
Scholar profile.
SCOPUS
profile.
Publons
profile.
Teaching:
Non-stationary elastic waves (slides
in Russian)
List
of principal publications
Drafts
of some papers are available at ResearchGate
or arXiv.
S.N.
Gavrilov, I.O. Poroshin, E.V. Shishkina, Yu.A. Mochalova. Formal
asymptotics for oscillation of a discrete mass-spring-damper system
of time-varying properties, embedded into a one-dimensional medium
described by the telegraph equation with variable coefficients.
Nonlinear Dyn, 2024. DOI: 10.1007/s11071-024-10154-4.
S.N.
Gavrilov, E.V. Shishkina. Non-stationary elastic wave scattering and
energy transport in a one-dimensional harmonic chain with an
isotopic defect. Continuum Mechanics and Thermodynamics, 36(3),
699–724 (2024). DOI: 10.1007/s00161-024-01289-1
E.V.
Shishkina, S.N. Gavrilov. Localized Modes in a 1D Harmonic
Crystal with a Mass-Spring Inclusion. In book: Editors:
Altenbach, H., Eremeyev, V. Advances in Linear and Nonlinear
Continuum and Structural Mechanics, Advanced Structured Materials
198, p. 461-479 (2023). DOI: 10.1007/978-3-031-43210-1_25
S.N.
Gavrilov, E.V. Shishkina, Yu.A. Mochalova.An example of the
anti-localization of non-stationary quasi-waves in a 1D
semi-infinite harmonic chain. Proc.Int. Conf. DAYS on
DIFFRACTION 2023, pp. 67–72. DOI: 10.1109/DD58728.2023.10325733.
E.V.
Shishkina, S.N. Gavrilov, Yu.A. Mochalova. The anti-localization of
non-stationary linear waves and its relation to the localization.
The simplest illustrative problem. Journal of Sound and Vibration,
553, 117673 (2023). DOI: 10.1016/j.jsv.2023.117673
E.V.
Shishkina, S.N. Gavrilov. Unsteady ballistic heat transport in a 1D
harmonic crystal due to a source on an isotopic defect. Continuum
Mechanics and Thermodynamics 35, 431–456 (2023). DOI:
10.1007/s00161-023-01188-x
S.N.
Gavrilov. Discrete and continuum fundamental solutions describing
heat conduction in a 1D harmonic crystal: discrete-to-continuum
limit and slow-and-fast motions decoupling. International Journal of
Heat and Mass Transfer 194C (2022), 123019. DOI:
10.1016/j.ijheatmasstransfer.2022.123019
S.N.
Gavrilov, E.V. Shishkina, I.O. Poroshin. Non-stationary oscillation
of a string on the Winkler foundation subjected to a discrete
mass-spring system non-uniformly moving at a sub-critical speed.
Journal of Sound and Vibration 522 (2022), 116673. DOI:
10.1016/j.jsv.2021.116673
S.N.
Gavrilov, A.M. Krivtsov. Steady-state ballistic thermal transport
associated with transversal motions in a damped graphene lattice
subjected to a point heat source. Continuum Mechanics and
Thermodynamics 34 (2022), p.
297-319. DOI: 10.1007/s00161-021-01059-3
A.A.
Sokolov, W.H.Müller, A.V.Porubov, S.N.Gavrilov. Heat conduction in
1D harmonic crystal: Discrete and continuum approaches.
International Journal of Heat and Mass Transfer, 176, 121442 (2021)
DOI: 10.1016/j.ijheatmasstransfer.2021.121442
E.V.
Shishkina, S.N. Gavrilov, Yu.A. Mochalova. Passage through a
resonance for a mechanical system, having time-varying parameters
and possessing a single trapped mode. The principal term of the
resonant solution. Journal of Sound of Vibration, 484, p. 115422
(2020) DOI: 10.1016/j.jsv.2020.115422
S.N.
Gavrilov, A.M. Krivtsov. Steady-state kinetic temperature
distribution in a two-dimensional square harmonic scalar lattice
lying in a viscous environment and subjected to a point heat source.
Continuum Mechanics and Thermodynamics, 32, pp. 41–61 (2020) DOI:
10.1007/s00161-019-00782-2.
S.N.
Gavrilov, A.M. Krivtsov. Thermal equilibration in a one-dimensional
damped harmonic crystal. Phys. Rev. E, 100, 022117 (2019). DOI:
10.1103/PhysRevE.100.022117
M.
Ferretti, S.N. Gavrilov, V.A. Eremeyev, A. Luongo. Nonlinear planar
modeling of massive taut strings travelled by a force-driven
point-mass. Nonlinear Dynamics, 97(4), pp. 2201-2218 (2019). DOI:
10.1007/s11071-019-05117-z.
S.N.
Gavrilov, E.V. Shishkina, Yu.A. Mochalova. An infinite-length system
possessing a unique trapped mode versus a single degree of freedom
system: a comparative study in the case of time-varying parameters.
In book: Editors: Altenbach H. et al. Dynamical Processes in
Generalized Continua and Structures, Advanced Structured Materials
103, pp.231-251, Springer (2019). DOI: 10.1007/978-3-030-11665-1_13.
S.N.
Gavrilov, E.V. Shishkina, Yu.A. Mochalova. Non-stationary localized
oscillations of an infinite string, with time-varying tension, lying
on the Winkler foundation with a point elastic inhomogeneity.
Nonlinear Dynamics, 95(4), pp. 2995–3004 (2019). DOI:
10.1007/s11071-018-04735-3.
E.V.
Shishkina, S.N. Gavrilov, Yu.A. Mochalova. Non-stationary localized
oscillations of an infinite Bernoulli-Euler beam lying on the
Winkler foundation with a point elastic inhomogeneity of
time-varying stiffness. Journal of Sound and Vibration, 440 (2019)
174–185. DOI: 10.1016/j.jsv.2018.10.016.
S.N.
Gavrilov, A.M. Krivtsov, D.V. Tsvetkov. Heat transfer in a
one-dimensional harmonic crystal in a viscous environment subjected
to an external heat supply. Continuum Mechanics and Termodynamics
(2019) 31(1), pp. 255-272. DOI: 10.1007/s00161-018-0681-3.
S.N.
Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Evolution of a
trapped mode of oscillation in a string on the Winkler foundation
with point inhomogeneity. Proc.Int. Conf. DAYS on DIFFRACTION 2017,
pp. 128–133. DOI: 10.1109/DD.2017.8168010.
E.V.
Shishkina, S.N. Gavrilov. Stiff phase nucleation in a
phase-transforming bar due to the collision of non-stationary waves.
Arch. Appl. Mech. (2017) 87(6): pp. 1019-1036. DOI:
10.1007/s00419-017-1228-y.
D.A.
Indeitsev, S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Evolution
of a trapped mode of oscillation in a continuous system with a
concentrated inclusion of variable mass. Doklady Physics (2016)
61(12): pp. 620–624. DOI: 10.1134/S1028335816120065.
S.N.
Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Trapped modes of
oscillation and localized buckling of a tectonic plate as a possible
reason of an earthquake. Proc.Int. Conf. DAYS on DIFFRACTION 2016,
pp. 161–165. DOI: 10.1109/DD.2016.7756834.
S.N.
Gavrilov, V. A. Eremeyev, G. Piccardo, A. Luongo. A revisitation of
the paradox of discontinuous trajectory for a mass particle moving
on a taut string. Nonlinear Dynamics (2016) 86(4): 2245-2260. DOI:
10.1007/s11071-016-3080-y.
S.N.
Gavrilov, E.V. Shishkina. Scale-invariant initial value problems
with applications to the dynamical theory of stress-induced phase
transformations. Proc.Int. Conf. DAYS on DIFFRACTION 2015, pp.
96–101. DOI: 10.1109/DD.2015.7354840.
E.V.
Shishkina, S.N. Gavrilov. A strain-softening bar with rehardening
revisited. Mathematics and Mechanics of Solids (2016) 21(2):137-151.
DOI: 10.1177/1081286515572247.
S.N.
Gavrilov, E.V. Shishkina. A strain-softening bar revisited. ZAMM
(2015) 95(12): 1521–1529. DOI: 10.1002/zamm.201400155
S.N.
Gavrilov, E.V. Shishkina. New phase nucleation due to the collision
of two nonstationary waves. Doklady Physics (2014) 59(12): 577–581.
DOI: 10.1134/S1028335814120027.
S.N.
Gavrilov, G.C. Herman. Wave propagation in a semi-infinite
heteromodular elastic bar subjected to a harmonic loading. Journal
of Sound and Vibration, (2012), 331(20): 4464-4480. DOI:
10.1016/j.jsv.2012.05.022
S.N.
Gavrilov, E.V. Shishkina. On stretching of a bar capable of
undergoing phase transitions. Continuum Mechanics and Thermodynamics
(2010), 22(4), 299-316. DOI: 10.1007/s00161-010-0139-8.
E.V.
Shishkina, I.I. Blekhman, M.P. Cartmell, S.N. Gavrilov. Application
of the method of direct separation of motions to the parametric
stabilization of an elastic wire. Nonlinear Dynamics (2008) 54:
313-331. DOI: 10.1007/s11071-008-9331-9.
S.
N. Gavrilov. Dynamics of a free phase boundary in an infinite bar
with variable cross-sectional area. ZAMM (2007) 87(2):117-127. DOI:
10.1002/zamm.200610306.
S.
N. Gavrilov. Proper dynamics of phase interface in an infinite
elastic bar with variable cross section. Doklady Physics (2007)
52(3):161-164. DOI: 10.1134/S1028335807030081.
S.N.
Gavrilov. The effective mass of a point mass moving along a string
on a Winkler foundation. PMM J. Appl. Math. Mechs (2006) 70:
582-589. DOI: 10.1016/j.jappmathmech.2006.09.009.
S.N.
Gavrilov, G.C. Herman. Oscillation of a Punch Moving on the Free
Surface of an Elastic Half Space. Journal of Elasticity (2004) 75:
247-265. DOI: 10.1007/s10659-004-5902-2.
S.N.
Gavrilov, D.A. Indeitsev. On the evolution of localized mode of
oscillation in system "string on an elastic foundation - moving
inertial inclusion". PMM J. Appl. Math. Mechs (2002)
66(5):825-833. DOI: 10.1016/S0021-8928(02)90013-4.
S.
Gavrilov. Nonlinear investigation of the possibility to exceed the
critical speed by a load on a string. Acta Mechanica (2002)
154:47-60. DOI: 10.1007/BF01170698.
S.
Gavrilov. Transition through the critical velocity for a moving load
in an elastic waveguide. Technical Physics (2000) 45(4):515-518.
DOI: 10.1134/1.1259668.
S.
Gavrilov. Non-stationary problems in dynamics of a string on an
elastic foundation subjected to a moving load. Journal of Sound and
Vibration (1999) 222(3):345-361. DOI: 10.1006/jsvi.1998.2051.
Last
updated: 2024-09-28