Serge N. Gavrilov
Date
of birth: May 27,
1973.
Address:
Institute for Problems in Mechanical
Engineering of Russian Academy of Sciences, Bolshoy pr. V.O., 61,
199178, St. Petersburg, Russia.
E-mail:
serge AT pdmi.ras.ru, serge.gavrilov
AT gmail.com
Keywords
to the fields of interest: rational
mechanics, non-stationary wave propagation, elastodynamics, trapped
modes, lattice dynamics, ballistic thermal conductivity, asymptotics,
configurational forces, dynamics of phase transitions, constitutive
theory.
Affiliation:
Master
thesis: “Mathematical
model of Kelvin's medium” (superviser is
Prof. P.A. Zhilin, Head of Department of Theoretical Mechanics,
Faculty of Physics and Mechanics, SPbSTU), 1996.
PhD
thesis:
“Non-stationary processes in elastic waveguides subjected to a
moving load overcoming the critical velocity” (supervisers are
Prof. D.A. Indeitsev and Prof. P.A.
Zhilin, IPME), 1999.
Habilitation
thesis:
“Non-stationary dynamics of elastic bodies with moving inclusions
and boundaries”, IPME, 2013.
ORCID
profile.
Google
Scholar profile.
SCOPUS
profile.
Publons
profile.
Teaching:
Non-stationary elastic waves (slides
in Russian)
List
of principal publications
Drafts
of some papers are available at ResearchGate
or arXiv.
S.N.
Gavrilov, A.M. Krivtsov, E.V. Shishkina. Energy transport in a free
Euler–Bernoulli beam in terms of Schrödinger’s wave function.
Mechanics Research Communications (2025).
DOI:10.1016/j.mechrescom.2025.104382
S.N.
Gavrilov, I.O. Poroshin, E.V. Shishkina, Yu.A. Mochalova. Formal
asymptotics for oscillation of a discrete mass-spring-damper system
of time-varying properties, embedded into a one-dimensional medium
described by the telegraph equation with variable coefficients.
Nonlinear Dyn, 112, 20967–21002 (2024). DOI:
10.1007/s11071-024-10154-4.
S.N.
Gavrilov, E.V. Shishkina. Non-stationary elastic wave scattering and
energy transport in a one-dimensional harmonic chain with an
isotopic defect. Continuum Mechanics and Thermodynamics, 36(3),
699–724 (2024). DOI: 10.1007/s00161-024-01289-1
E.V.
Shishkina, S.N. Gavrilov. Localized Modes in a 1D Harmonic
Crystal with a Mass-Spring Inclusion. In book: Editors:
Altenbach, H., Eremeyev, V. Advances in Linear and Nonlinear
Continuum and Structural Mechanics, Advanced Structured Materials
198, p. 461-479 (2023). DOI: 10.1007/978-3-031-43210-1_25
S.N.
Gavrilov, E.V. Shishkina, Yu.A. Mochalova.An example of the
anti-localization of non-stationary quasi-waves in a 1D
semi-infinite harmonic chain. Proc.Int. Conf. DAYS on
DIFFRACTION 2023, pp. 67–72. DOI: 10.1109/DD58728.2023.10325733.
E.V.
Shishkina, S.N. Gavrilov, Yu.A. Mochalova. The anti-localization of
non-stationary linear waves and its relation to the localization.
The simplest illustrative problem. Journal of Sound and Vibration,
553, 117673 (2023). DOI: 10.1016/j.jsv.2023.117673
E.V.
Shishkina, S.N. Gavrilov. Unsteady ballistic heat transport in a 1D
harmonic crystal due to a source on an isotopic defect. Continuum
Mechanics and Thermodynamics 35, 431–456 (2023). DOI:
10.1007/s00161-023-01188-x
S.N.
Gavrilov. Discrete and continuum fundamental solutions describing
heat conduction in a 1D harmonic crystal: discrete-to-continuum
limit and slow-and-fast motions decoupling. International Journal of
Heat and Mass Transfer 194C (2022), 123019. DOI:
10.1016/j.ijheatmasstransfer.2022.123019
S.N.
Gavrilov, E.V. Shishkina, I.O. Poroshin. Non-stationary oscillation
of a string on the Winkler foundation subjected to a discrete
mass-spring system non-uniformly moving at a sub-critical speed.
Journal of Sound and Vibration 522 (2022), 116673. DOI:
10.1016/j.jsv.2021.116673
S.N.
Gavrilov, A.M. Krivtsov. Steady-state ballistic thermal transport
associated with transversal motions in a damped graphene lattice
subjected to a point heat source. Continuum Mechanics and
Thermodynamics 34 (2022), p.
297-319. DOI: 10.1007/s00161-021-01059-3
A.A.
Sokolov, W.H.Müller, A.V.Porubov, S.N.Gavrilov. Heat conduction in
1D harmonic crystal: Discrete and continuum approaches.
International Journal of Heat and Mass Transfer, 176, 121442 (2021)
DOI: 10.1016/j.ijheatmasstransfer.2021.121442
E.V.
Shishkina, S.N. Gavrilov, Yu.A. Mochalova. Passage through a
resonance for a mechanical system, having time-varying parameters
and possessing a single trapped mode. The principal term of the
resonant solution. Journal of Sound of Vibration, 484, p. 115422
(2020) DOI: 10.1016/j.jsv.2020.115422
S.N.
Gavrilov, A.M. Krivtsov. Steady-state kinetic temperature
distribution in a two-dimensional square harmonic scalar lattice
lying in a viscous environment and subjected to a point heat source.
Continuum Mechanics and Thermodynamics, 32, pp. 41–61 (2020) DOI:
10.1007/s00161-019-00782-2.
S.N.
Gavrilov, A.M. Krivtsov. Thermal equilibration in a one-dimensional
damped harmonic crystal. Phys. Rev. E, 100, 022117 (2019). DOI:
10.1103/PhysRevE.100.022117
M.
Ferretti, S.N. Gavrilov, V.A. Eremeyev, A. Luongo. Nonlinear planar
modeling of massive taut strings travelled by a force-driven
point-mass. Nonlinear Dynamics, 97(4), pp. 2201-2218 (2019). DOI:
10.1007/s11071-019-05117-z.
S.N.
Gavrilov, E.V. Shishkina, Yu.A. Mochalova. An infinite-length system
possessing a unique trapped mode versus a single degree of freedom
system: a comparative study in the case of time-varying parameters.
In book: Editors: Altenbach H. et al. Dynamical Processes in
Generalized Continua and Structures, Advanced Structured Materials
103, pp.231-251, Springer (2019). DOI: 10.1007/978-3-030-11665-1_13.
S.N.
Gavrilov, E.V. Shishkina, Yu.A. Mochalova. Non-stationary localized
oscillations of an infinite string, with time-varying tension, lying
on the Winkler foundation with a point elastic inhomogeneity.
Nonlinear Dynamics, 95(4), pp. 2995–3004 (2019). DOI:
10.1007/s11071-018-04735-3.
E.V.
Shishkina, S.N. Gavrilov, Yu.A. Mochalova. Non-stationary localized
oscillations of an infinite Bernoulli-Euler beam lying on the
Winkler foundation with a point elastic inhomogeneity of
time-varying stiffness. Journal of Sound and Vibration, 440 (2019)
174–185. DOI: 10.1016/j.jsv.2018.10.016.
S.N.
Gavrilov, A.M. Krivtsov, D.V. Tsvetkov. Heat transfer in a
one-dimensional harmonic crystal in a viscous environment subjected
to an external heat supply. Continuum Mechanics and Termodynamics
(2019) 31(1), pp. 255-272. DOI: 10.1007/s00161-018-0681-3.
S.N.
Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Evolution of a
trapped mode of oscillation in a string on the Winkler foundation
with point inhomogeneity. Proc.Int. Conf. DAYS on DIFFRACTION 2017,
pp. 128–133. DOI: 10.1109/DD.2017.8168010.
E.V.
Shishkina, S.N. Gavrilov. Stiff phase nucleation in a
phase-transforming bar due to the collision of non-stationary waves.
Arch. Appl. Mech. (2017) 87(6): pp. 1019-1036. DOI:
10.1007/s00419-017-1228-y.
D.A.
Indeitsev, S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Evolution
of a trapped mode of oscillation in a continuous system with a
concentrated inclusion of variable mass. Doklady Physics (2016)
61(12): pp. 620–624. DOI: 10.1134/S1028335816120065.
S.N.
Gavrilov, Yu.A. Mochalova, E.V. Shishkina. Trapped modes of
oscillation and localized buckling of a tectonic plate as a possible
reason of an earthquake. Proc.Int. Conf. DAYS on DIFFRACTION 2016,
pp. 161–165. DOI: 10.1109/DD.2016.7756834.
S.N.
Gavrilov, V. A. Eremeyev, G. Piccardo, A. Luongo. A revisitation of
the paradox of discontinuous trajectory for a mass particle moving
on a taut string. Nonlinear Dynamics (2016) 86(4): 2245-2260. DOI:
10.1007/s11071-016-3080-y.
S.N.
Gavrilov, E.V. Shishkina. Scale-invariant initial value problems
with applications to the dynamical theory of stress-induced phase
transformations. Proc.Int. Conf. DAYS on DIFFRACTION 2015, pp.
96–101. DOI: 10.1109/DD.2015.7354840.
E.V.
Shishkina, S.N. Gavrilov. A strain-softening bar with rehardening
revisited. Mathematics and Mechanics of Solids (2016) 21(2):137-151.
DOI: 10.1177/1081286515572247.
S.N.
Gavrilov, E.V. Shishkina. A strain-softening bar revisited. ZAMM
(2015) 95(12): 1521–1529. DOI: 10.1002/zamm.201400155
S.N.
Gavrilov, E.V. Shishkina. New phase nucleation due to the collision
of two nonstationary waves. Doklady Physics (2014) 59(12): 577–581.
DOI: 10.1134/S1028335814120027.
S.N.
Gavrilov, G.C. Herman. Wave propagation in a semi-infinite
heteromodular elastic bar subjected to a harmonic loading. Journal
of Sound and Vibration, (2012), 331(20): 4464-4480. DOI:
10.1016/j.jsv.2012.05.022
S.N.
Gavrilov, E.V. Shishkina. On stretching of a bar capable of
undergoing phase transitions. Continuum Mechanics and Thermodynamics
(2010), 22(4), 299-316. DOI: 10.1007/s00161-010-0139-8.
E.V.
Shishkina, I.I. Blekhman, M.P. Cartmell, S.N. Gavrilov. Application
of the method of direct separation of motions to the parametric
stabilization of an elastic wire. Nonlinear Dynamics (2008) 54:
313-331. DOI: 10.1007/s11071-008-9331-9.
S.
N. Gavrilov. Dynamics of a free phase boundary in an infinite bar
with variable cross-sectional area. ZAMM (2007) 87(2):117-127. DOI:
10.1002/zamm.200610306.
S.
N. Gavrilov. Proper dynamics of phase interface in an infinite
elastic bar with variable cross section. Doklady Physics (2007)
52(3):161-164. DOI: 10.1134/S1028335807030081.
S.N.
Gavrilov. The effective mass of a point mass moving along a string
on a Winkler foundation. PMM J. Appl. Math. Mechs (2006) 70:
582-589. DOI: 10.1016/j.jappmathmech.2006.09.009.
S.N.
Gavrilov, G.C. Herman. Oscillation of a Punch Moving on the Free
Surface of an Elastic Half Space. Journal of Elasticity (2004) 75:
247-265. DOI: 10.1007/s10659-004-5902-2.
S.N.
Gavrilov, D.A. Indeitsev. On the evolution of localized mode of
oscillation in system "string on an elastic foundation - moving
inertial inclusion". PMM J. Appl. Math. Mechs (2002)
66(5):825-833. DOI: 10.1016/S0021-8928(02)90013-4.
S.
Gavrilov. Nonlinear investigation of the possibility to exceed the
critical speed by a load on a string. Acta Mechanica (2002)
154:47-60. DOI: 10.1007/BF01170698.
S.
Gavrilov. Transition through the critical velocity for a moving load
in an elastic waveguide. Technical Physics (2000) 45(4):515-518.
DOI: 10.1134/1.1259668.
S.
Gavrilov. Non-stationary problems in dynamics of a string on an
elastic foundation subjected to a moving load. Journal of Sound and
Vibration (1999) 222(3):345-361. DOI: 10.1006/jsvi.1998.2051.
Last
updated: 2024-01-31