next up previous
Next: About this document ... Up: Configurations of Skew Lines Previous: Connection with Real Algebraic

Bibliography

1
O. Ya. Viro, Yu. V. Drobotukhina Spleteniia skrescivaiuscikhsia priamykh, Kvant, 1988, no. 3.

2
O. Ya. Viro, Yu. V. Drobotukhina Configurations of skew lines, Algebra i analiz 1:4 (1989), (Russian) (Russian) English transl., Leningrad Math. J. 1:4 (1990), 1027-1050.

3
O. Ya. Viro, Topological problems concerning lines and points of three-dimensional space Soviet Math. Dokl. 32:2 (1985), 528-531.

4
V. F. Mazurovski{\u{\i\/}}\kern.15em, Configurations of six skew lines Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988), 121-134.

5
V. F. Mazurovski{\u{\i\/}}\kern.15em, Configurations of at most six lines of $ \mathbb{R}P^3$, Real Algebraic Geometry, Proceedings of the conference held in Rennes, France, June 24-28, 1991, Lecture Notes in Math., vol 1524, 1992, 354-371.

6
V. F. Mazurovski{\u{\i\/}}\kern.15em, Kauffman polynomials for nonsingular configurations of projective lines, Uspekhi Mat. Nauk 44:5 (1989), 173-174; English transl., Russian Math. Surveys 44 (1989), no. 5, 212-213.

7
J.V.Drobotukhina, An analogue of the Jones polynomial for links in $ \mathbb{R}P^3$ and a generalization of the Kauffman-Murasugi theorem Algebra i analiz 2:3 (1990) (Russian) English transl., Leningrad Math. J. 2:3 (1991), 613-630.

8
Alberto Borobia and Vladimir F. Mazurovski{\u{\i\/}}\kern.15em, Nonsingular configurations of 7 lines of $ \mathbb{R}P^3$ Preprint U.U.D.M. Report 1995:41, Department of Mathematics, Uppsala University.

9
V. F. Mazurovski{\u{\i\/}}\kern.15em, N. B. Pavlov, Classification of ordered nonsingular configurations of $ \le7$ lines of $ \mathbb{R}P^3$ up to rigid isotopy, Issledovaniya po topologii. 8 (Zapiski Nauchnykh Seminarov POMI, vol. 231), SPb, (1995) 269-285 (Russian).

10
S. S. Podkorytov, Amphicheiral configurations of points and lines and algebraic surfaces of degree 4, Issledovaniya po topologii. 8 (Zapiski Nauchnykh Seminarov POMI, vol. 231), SPb, (1995) 286-298 (Russian).

11
S. M. Finashin, Configurations of seven points in $ \mathbb{R}P^3$, Topology and Geometry (Rokhlin Seminar), Lecture Notes in Math., vol. 1346, Springer (1988), 501-526.

12
N. E. Mnev, The universality theorems on the classification problem of configuration varieties and convex polytopes, Topology and Geometry (Rokhlin Seminar), Lecture Notes in Math., vol. 1346, Springer, (1988) 527-544.

13
. Yu. Suvorov, Isotopic but not rigidly isotopic plane systems of straight lines, Topology and Geometry (Rokhlin Seminar), Lecture Notes in Math., vol. 1346, Springer, (1988) 545-556.

14
V. F. Mazurovski{\u{\i\/}}\kern.15em, Non-singular configurations of $ k$-dimensional subspaces of $ (2k+1)$-dimensional real projective space, Vestnik Leningrad Univ. 1990, no. 15, Mat. Mech. Astronom. vyp. 3, 21-26 (Russian) English transl., in Vestnik Leningrad Univ. Math.

15
Serge{\u{\i\/}}\kern.15em I. Khashin and Vladimir F. Mazurovski{\u{\i\/}}\kern.15emStable Equivalence of Real Projective Configurations, Topology of Real Algebraic Varieties and Related Topics, Adv. in Math. Sci. 29, Amer. Math. Soc. Transl. (2) Vol. 173 (1996) 119-140.

16
V. V. Nikulin, Integral symmetric bilinear forms and some geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43:1 (1979), 111-177.

17
V. M. Kharlamov, Non-amphicheiral surfaces of degree $ 4$ in $ \mathbb{R}P^3$ Topology and Geometry (Rokhlin Seminar), Lecture Notes in Math., vol. 1346, Springer (1988), 349-356.



Oleg Viro 2000-12-29