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Abstract

Reiner proposed two conjectures about the structure of the critical group of the n-cube Q.
In this paper we confirm them. Furthermore we describe its p-primary structure for all odd
primes p. The results are generalized to Cartesian product of complete graphs K;, x --- x
Kp, by Jacobson, Niedermaier and Reiner.
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1. Introduction

The n-cube or hypercube Q, is the simple graph whose vertices are the n-tuples
with entries in {0, 1} and whose edges are the pairs of n-tuples that differs in exactly
one position.

Let G = (V, E) be a finite graph without self-loops, but, with multiple edges
allowed and let n = |V|. The n x n Laplacian matrix L(G) for this graph G, is
defined by

degg(u) ifu=w,
—My otherwise,

L(G)u,v = {

where m,, , denotes the multiplicity of the edge {u, v} in E. The Laplacian matrix of
a graph, which dates back to Kirchhoff’s matrix-tree theorem, plays an important role
in the study of spanning trees, graph spectra, and the graph isomorphism problem,
see [2,10,15].
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When G is connected, the kernel of L(G) is spanned by the all-1 vector (1,

1,..., D" in R", where superscript ¢ denotes the transpose. Considering L(G) as
a linear map from 7" to itself, its cokernel has the form
7"/ImL(G)=7 @ K (G),

where K (G) is defined to be the critical group (also called the Picard group [1],
Jacobian group [3] or sandpile group [6]). It follows from Kirchhoff’s matrix-tree
theorem that the order |K (G)| is known to be #'(G), the number of spanning trees
inG.

Kirchhoff’s Matrix-Tree Theorem (see, e.g. [2, Chapter 6]).
@
A (G) = (=) det L(G)
here L(G) is a reduced Laplacian matrix obtained from L(G) by deleting row i
and column j.

(i1) For any graph G with n vertices, index the eigenvalues of the Laplacian L(G) in
weakly decreasing order:

MZhZz 2 A1 24 =0

then

AMA2 - Ao
A(G) = 142 n=1

Our main tools will be the use of Smith Normal Form for integer matrices. Given
a square integer matrix A, its Smith normal form is the unique equivalent diagonal
matrix S(A) = diag[sy, 52, ..., s,] whose entries s; are nonnegative and s; divides
si+1. The s; are known as the invariant factors of A [16]. Two integral matrices A
and B are equivalent (denoted as A ~ B) if there exist integer matrices P and Q of
determinant 1 that satisfy PAQ = B.

The structure of the critical group is closely related with the Laplacian matrix:
if the Smith normal form of L(G) is diag[si, 52, ..., s,], then K(G) is the torsion
subgroup of Z,, x Z,, x --- x Zs,. Here Z, denote the cyclic group Z/nZ for any
nonnegative integer n.

There are very few families of graphs for which the critical group structure has
been completely determined, such as complete graphs and complete bipartite graphs
[13], cycles [14], wheels [4], generic threshold graphs [5], etc.

Reiner [17] proposed two conjectures on the structure of the critical group
of n-cube K (Q,). His first conjecture is the following theorem, which we prove
in Section 2.

Theorem 1.1. The critical group of Q, has exactly 2"~' — 1 invariant factors, for
n>1.
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We show the structure of the Sylow p-group of the critical group of the n-cube
when p is an odd prime.

Theorem 1.2. For any odd prime number p, the Sylow p-group of the critical group
of the n-cube Syl ,K (Q,) has the following expression:

Syl K (Q) =Syl ( 1% )

k=1

Recently Jacobson, Niedermaier and Reiner generalize this result to the Cartesian
product of complete graphs K, x -+ x Kj,.

Jacobson—-Niedermaier—-Reiner Theorem [12, Theorem 2]. For every prime p that
divides none of ny, ..., ng, the Sylow p-subgroup (or p-primary component) of the
critical group K (K,, x --- x Kp,) has the following description:

SylpK(Knl X oee X Knk)E @ Sylp(ZNs)n"ES(ni_l),
P#SCIk]

where Ng := ), ¢ nj.

One knows from simple eigenvalue calculations (see [12, Section 2]) that

1 . Pa—
%(Knl X X Knk) ey — 1_[ NSHIES(”I 1).

k
izt ni prsci

Note that this general result on p-primary structures (for p that divides none of
ni,...,ng)is as simple as one could hope.

Our next result is related to the 2-primary structure of K (Q).

Let a,, denotes the number of occurrences of Z; in the elementary divisor form of
the critical group of the n-cube K (Q,). Reiner’s second conjecture is confirmed in
Section 4.

Theorem 1.3. The generating function of a, is

o0
mt (1 —2x)(1 —2x2)°
n=0

This leads to a simple expression for a,, (ap = a; = 0):
ap, =2""2 —2l0=221 whenn > 2.
For the background of the elementary divisor form of a finitely generated abelian
group (see [8, p. 163]).

The full structure of the Sylow-2 subgroup of the critical group of the n-cube is
still unknown.
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2. Some lemmas and the proof of Theorem 1.1

Let L, = L(Q,).Clearly Ly = 0 and since Q, = Q,—1 x Q1 forn > 1, one can
order the vertices of Q, such that

L, = Ly1+1 —1
n —1 L, 1+1)/)"

The size of L, is 2", which is the number of vertices of Q,,.

Throughout this paper let L, := L, + 2k, n and k be nonnegative integers,
where 2k denotes the scalar matrix 2k/ with I an identity matrix of same size as
L. In general, if A is a matrix and ¢ a constant, A + ¢ denotes A 4+ cI.If A and B
are two square matrices, we also make following convention:

k times
e e
A@B::(é g) and A@kzzAéBAea---eBA.

Let M,,(R) denote the set of n x n matrices with entries in the ring R. If the size
of the matrices does not matter or is clear, sometimes we simply write M, (R) as
M(R).

Lemma 2.1
1 m—1

— T Laksi € M@)
m: i=0

for any m € N. In particular, L, (L, +2) € M(27).

Proof. Let

I n— _I n— 7
T, := ( % | I . 1)’ Ln—1k = Ln—1,k ® Ln—1.k-
— 2)171 2"*1

Then anl,k commutes with 7;,, and (%T,,)2 = %Tn. Hence

1 I J
<§Ln,k> = <§(Ln—l,k + Tn))
1- o 2N (1 !
= <§Ln—l,k> + ETn IZ <1) (ELn—l,k>

Note that

m

m—1
[Ta+i=2 cm !
i=0

J=1
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where c(m, j) is the signless Stirling number of the first kind,

m—1 m 1 j
_H Lyt = szc<m, ) <5Ln,k>
i=0 j=1

m—1

_ 1 m—1 _ m—1 .
= [ Lok +5Tn <1‘[(Ln_1,k+i +2) =[] Ln1asi
i=0 i=0 i=0

m—1 m—1

= l_[ Lnfl,k+i +mT, l_[ Lnfl,k+i~
i=0 i=1

Now by induction on n + m (the lemma is trivial when n = 0 since Lo = 0),
1 m—1

P Lyt k+i
T i=0

isin M (Z), and so is
1 m—1 1 (m—1)—1
o (an E Ln—l,k+i> =T, = H Ly—1 (k+1)+i

So the lemma is true for all n, m. [

Lemma 2.2
Ly~ Ion @ Ly gLy gy

Consequently, we have a group isomorphism

n+1 ~ n
72 /Im Loz =72 /Im LykLns1.

Proof
L . 14+ L,k —1
n+l,k = -1 1+ Ln,k

0 —1
(Ln,k(Ln,k + 2) 1+ Ln,k)

1 0
~ . O
(0 Ln,kLn,kJrl )

Corollary 2.3. The Smith normal form of L, has exactly 2"~" occurrences of 1, for
alln > 1.

Proof. Let k = 0 and replace n by n — 1 in the above lemma. Note that there
is no occurrence of 1 in the Smith normal form of L,_1(L,_; + 2), which is in
Mn—1(27). Hence it concludes. [
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This statement is equivalent to (cf. Fiol [9]) the following theorem, which is

Reiner’s first conjecture on the number of invariant factors of K (Q;):

Theorem 1.1. The critical group of Q,, has exactly 2"~' — 1 invariant factors.

3. The Sylow p-group of K(Q,) for p #+ 2

In this section we will determine the structure of the Sylow p-group of the critical
group K (Q,,) for all odd primes p.

If A is an n x n integer matrix, let K(A) be the torsion subgroup of the finitely
generated abelian group 7" /Im A. If G is an abelian group, let Syl »G denote the
Sylow p-group of G.

Proposition 3.1

Syl, K (Ln+1,6) = Syl,K(Ly k) X Syl,K(Ly k+1)-
Proof. We have two group homomorphisms ¥ and ¢:
v
K(Ln,kLn,k-H) ? K(Ln,k) X K(Ln,k—i-l);

1//(w + Ian,kL,,,H]) = (w +ImL,,, w+ Ian,k_H),
¢(u+1ImLy g, v+ImLyjq1) = Lygsitt — Ly v +Im Ly gLy gt

Let 2| denote the ‘multiplication by 2° homomorphism of G for any abelian
group G. It is straightforward to check that

Y o¢ =2lk@,xKLps) A P oY =2K(L, 1 Lyis)-

Now consider the restriction of ¢ and ¥ to Sylow p-subgroups for p an odd
prime. Because 2|¢ is an isomorphism for any finite abelian p-group G, both ¥ and
¢ must be isomorphisms, so

Syl, K (Ln+1,6) = Syl, K (Ln,k) % Syl, K (L k+1)- O

Theorem 1.2. For any odd prime number p, the Sylow p-group of the critical group
of the n-cube Syl ,K (Qy) has the following expression:

n n
Syl, K (Qn) = Syl, (]_[ z,@) .
k=1
Proof. Let us compute the Sylow p-group of K (Q,,) recursively:

Syl, K (Qn) = Syl, K (Lu—1,0)  Syl, K (Ly—1.1)
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~ 2
= Syl, K (Ln—2,0) % (Syl,K(Ln—2,1))" x Syl, K (Ly—22)

12

12
-

(Sy1,K (L)) @

~
Il
[}

~

(Sy1,K (Lop)® (et j =n).

=

o~
Il
o

In the final step, SylpK(Lo,k) by definition is Sylp(ZZO/Im(Lo + 2k)), which is just
Syl p 2>y, thus we obtain

Syl, K (Q.) = Syl, (]"[ Z,EZ)>. 0

k=1
4. Proof of Theorem 1.3

In this section we get a partial decomposition of Syl, K (Q,), which leads to the
proof of Reiner’s second conjecture on the occurrences of Z; in Syl, K (Qp).

Lemma 4.1. Ifm is an even positive integer, then

m—1 m ®2  m-1 Lo L
7 kLon,k+1 m
Lnyo ki ~ Lojti | © || Logwi | "7 5"
1_([) n+2,k+i H n,k+i l_£ n,k+i 0 Ln,k+an,k+m+l
1= 1= 1=

in Mn+2(Zyn), where N is any positive integer.

Proof. Recall that by Lemma 2.1 we have:

m—1 m—1 m—1
1_[ Ln,k+i = l_[ Ln—l,k+i +mT, l_[ Ln—l,k+i
i=0 i=0 i=1

m—1

O P T
H n—1,k+i —m Lnfl,k‘i‘m .
i=

We will try to do some elementary row and column operations [11] to get desired de-
composition of the Smith normal form. These operations consist of: adding an integer
multiple of one row (or column) to another; negating arow (or column); interchanging
two rows (or columns). Here we will use the theory of the Smith normal form for
matrices with entries in a principal idea domain (cf. [7]), in this case it is Z,n.

m—1 m—1

~ L —m r r
[T Lorzwsi ~ TT Losrasi ( o ) = < 0 FZ)
i=0 i=1

Ln+1,k+m
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where
m—1
~ L,r+m —m
Fll:l_[Ln,k+i< n’fm I3 k+m),
i=1 "
-1
r =—lel_[l~, (Lot Fm =1 —m—1)
2 Lo —m=) Lag+m =1
1=

m
~ L +m —m
I'yn = 1_[ L jeti ( i ) :

o —m Lyjy1+m
i=

By the same sort of operations, it is easy to see that

r r m—1 o4
n I '
( 0 Fzz) <l=l_£ Ln,k+1) A,

where
Ln,kLn,kJrl _an,k+1 _an,k+1 m(m — 1)
A= 0 Ln,k—HLn,k—i-m 0 _an,k—i-m
0 0 Ln,k+1Ln,k+m _an,k-i-m
0 0 0

Ln,k+an,k+m+l
Since m is even as assumption, there exists an integer » such that (m — 1)r =

1(mod 2M). Similarly, there exists an integer s making (1 — 2mr)s = 1(mod 2M), or,

equivalently, 1 4+ 2mrs = s(mod 2My. Let P, Q be block matrices in SLyn+2(Z,n) as

1 0 0 0
p— rSLy k+m 1+rsm rsm 0
"\ 2r%sLuiam rs rs 0 ’
0 _Ln,k-i-m—H _Ln,k+m+l (l - 2mr)(m - 1)
1 0 0 0
_ —rSsLy i 1 0 0
0= —rSLy i -1 m—-1 0

_2725Ln,kLn,k+l 0 Ln,kJrl r

Then we can check that in M (Z,n)

Ly kLp k+1 0 0 m

— 0 Ly k+1Ln k+m 0 0

PAQ = 0 0 Ly k+1Ln ktm 0
0 0 0

Ln,k+an,k+m+l

Thinking of the “coefficient” (]_K”:_z1 Ly, r+i) 4, we get the desired decomposition
of the Smith normal form in the lemma. [
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In the special case that m = 2, we already know that %Ln,kL,,,kH is still an
integer matrix, so we may continue elementary row/column operations:

(Ln,kLn,k—H 2 >
0 Ly ji2Ln k3

0 2
~ 1
_jLn,kLn,k—HLn,k+2Ln,k+3 Ln,k+2Ln,k+3
3

1
~ 2D @ 3 I_!)Ln,k+i~
=

So we have (only in M (Zyn)):

3
1
LyyaiLnya it ~ 210 @ (Lo g1 Lo k1 2)®* @ 3 [1Lnari
i=0

Knowing that K (L, 41.4) = K(L, x Ly k+1) (Lemma 2.2), we can rewrite this as

Corollary 4.2

3
~ n—3 2 1
SYLK (L) =75 x (SyLK (Ly—2k+1))” % SyLK (5 1_[ Ln3,k+i> ,
i=0

foranyn > 3.

Let a(n, k) be the number of the occurrences of Z; in Syl, K (L, k). In particu-
lar Reiner’s second conjecture concerns of a, := a(n, 0) for Syl, K (Q,). Note that
Z5 does not show up in Syl, K (% H?:o L, k+i) for any n and k, since the matrix
[Tg Lnkti is in M(247) by Lemma 2.1.

Now we can confirm Reiner’s second conjecture:

Theorem 1.3. The generating function of a, is

o
s (1 —2x0)(1 —2x2)°
n=0

Proof. By Corollary 4.2, a(n, k) has recurrence
ain, k) =2"34+2a(n—2,k+1), Vn>=3.
We evaluate directly the initial conditions:

a(0,k) =a(l,k) = a2, k) =0, Yk = 0.

These initial conditions imply that a(n, k) = a,,.
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Let f(x) = Y o2 an43x", then

T 1—2x

o o
@)= 2" 4 ) 22
n=0 n=0
o o0
= Z(Zx)" +2 Z any1x"
n=0 n=2
o0
2x)" 4 2x2 Z any3x"
n=0
+2x2 f(x).

Hence we conclude that f(x) = 1/[(1 —2x)(1 —2x%)]. O

Reiner shares with the author the data computed by the Smith normal form pro-
gram at web site http://linbox.pc.cis.udel.edu:8080/gap/SmithForm.html

SYIZK(QH)

O 0 I O W B W NS

—_ =
- O

24

7,73

737875

257376 2,

2y 732373, 728

13 L4 2 15, 245 I

BTN T T T
P20 2 T T T T T
BT I 2 T T Ty T
2 1P 1R 2 21 21 2R 25k
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