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1. Introduction

Let @ be the group of K-rational points of a connected simple algebraic
group over an algebraically closed field K of characteristic p. Let o be a
surjective endomorphism of G such that the group @, of o-stable elements
is finite.

The aim of the present paper is to obtain information about the centra-
lizers of semisimple elements in @, for all groups @ of classical type. To
achieve this we shall use some general results which have been derived in
a recent paper [5]. We shall also derive explicit formulae for the degrees
of the semisimple representations of G, when G is of adjoint type.

If x is a semisimple element of G, then its connected centralizer Cy(x)? is
a o-stable reductive subgroup of G of maximal rank [2, p. 201] and its
connected centralizer Cg ()° tn G, is the subgroup of o-stable elements in
Cy(x)°. We therefore consider more generally any o-stable connected
reductive subgroup @, of maximal rank in ¢ and determine when its
subgroup (@,), of o-stable elements is the connected centralizer of some
gemisimple element in G,.

The set € of o-stable conjugates of G, in @ is acted on by G, under
conjugation, and the set of orbits ¥/G, is in bijective correspondence
with the set of o-conjugacy classes in A}, (W;)/W,, where W is the Weyl
group of G and W, is the Weyl group of @, [5]. G, factorizes as G, = M8,
where M is semi-simple, S is a torus, and M n S is finite. Moreover, the
order of (@), is given by |(G,),| = |M,|.|S,|. A o-stable conjugate G, is
the connected centralizer of some semisimple element in @, if and only if
a certain finite abelian group I', determined by G, and the o-conjugacy
class in A5,(W;)/W,, has a regular character [5].

We shall say that two semisimple elements z, y of G are of the same
genus if their connected centralizers Cy(x)?, Cy(y)° are conjugate under G,.
The property of belonging to the same genus gives an equivalence relation
on the semisimple conjugacy classes in G,. The orders of the connected
centralizers in G, of semisimple elements of the same genus are equal. We
shall describe for each group @, of classical type the orders of the semi-
simple and toral parts of the connected centralizers Cg_(x)°.
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Deligne and Lusztig have shown [6] how families of irreducible complex
representations of the group G, can be constructed; these representations
might be called the semisimple representations of G,. It was proved by
Deligne and Lusztig that they are in bijective correspondence with the
semisimple conjugacy classes in @,, where G is the dual group of G,
if @ is an adjoint group [6, 10.7]. The degrees of the semisimple represen-
tations of G, can be written down in terms of the orders of the connected
centralizers of the corresponding semisimple elements in the simply-
connected group G,. In fact these degrees have the form

( |G, ) '
Cauarl) ¥
We shall describe these degrees for each adjoint group G, of classical type.
The results are valid for values of ¢ sufficiently large, where ¢ is the
number of elements in the finite field corresponding to G, but for small
values of ¢ some of the degrees may be missing in G,. If @ is not adjoint
the degrees of the semisimple representations of ¢, need not be given by
the above formula, although they appear to differ from it only in minor
respects.

For the general background to the subject under discussion the reader
should consult, for example, [2] or [8].

2. Classical groups over finite fields and their duality

We assume that @ is of classical type, i.e. of one of the types 4;, B;, G, D,
in the standard classification. For each of these types there are a number
of isogenous simple groups. In type 4, there is the simply-connected group
(A})se> the adjoint group (4,),q, and & number of other groups which are
neither simply-connected nor adjoint. In type B, the simply-connected
group (B,),, and adjoint group (B,), 4 give the only possibilities, and this is
true also in type C;. In type D, there is, in addition to (D)), and (Dj)aq,
the special orthogonal group SO, which we denote by (D)), When I is
even, there is a further group of this type called the half-spin group (D,)gg.

If Qs of classical type its dual G, as defined by Deligne and Lusztig [6], is
also of classical type. The duals of the groups @ described above are shown
on p. 3. For each of the above groups G the Frobenius map of raising
matrix coefficients to the gth power gives a surjective endomorphism o for
which G, is finite. (Here ¢ is a power of the characteristicp of K.) We obtain
in this way the split groups, or Chevalley groups, of classical type over finite
fields. However, for the types in which the Dynkin diagram has a
symmetry, viz. type 4; when I > 2 and type D,, we can choose for ¢ the
gth power map combined with the graph automorphism derived from the



CENTRALIZERS OF SEMISIMPLE ELEMENTS 3

G G
(Al.)sc (Al.)ad
(Al)a,d (Al)so
(Bl)so (Cl)a,d
(Bl)ad (Cl)so
(Ol)ac (Bl)ad
(Cl)u,d (Bl)se
(Dl)so (Dl)ud
(D l)so (D l)ao
(Di)us (D)as !even
(Dl)a.d (Dl)so

symmetry of the Dynkin diagram. In this way we obtain the quasi-split
groups, or Steinberg groups, over finite fields. These Steinberg groups
will as usual be denoted by 24, and 2D,. (The triality twisted Steinberg
groups 3D, may more naturally be regarded as exceptional groups and
will not be discussed in the present paper.)

If G, is a finite group of classical type its dual @, is also finite of classical
type. The duals G, of the groups G, described above are given in the
following list. In this list we have identified each group with its usual
description in terms of matrices; the orthogonal and spin groups, labelled

a, a,
SLy11(9) = (4,) sc(q) (4i)aa(g) = PGLy(g),
PGLy,(9) = (Al)a,d(Q)’ (A1)se(q) = SLyy4(9),
Sping,1(9) = (Bys(q), (Qaal9) = PGSpy(q),
850y,1(9) = (B1)aa(9), (C)sc(9) = Spal(q),
Spa(q) = (Gso(q)s (B1)aa(q) = SOy44(9),
PGSpu(q) = (Gaal9), (Bl)so(q) = Sping,4(q),
Spmm(q) (D)ec(q)s (D)aalg) = POxu(9),
So2l(9) = (Dl)so(Q)v (-Dl)so(Q) = SOm(Q),
HSy(9) = (D))gs(g), (D)us(g) = HSy(g), I even,
POzI(Q) = (Dl)ad(Q)’ (Dl)sc(Q) = SPinm(Q):
SUI+1(q) = (2Al)s?(q2)» (2Al):3.d(q2) = PU{+1(Q)»
PU,(9) = (34, )aa(q2), (4))so(¢®) = SU4(9),
Splnz’l(q) = ( Dl)sc(qz)’ (2Dl)ad(q2) = Poﬁ(q),
S0z(9) = (2Dy)so(4%)s (®Dy)so(9?) = SOz(9),
POz(9) = (*D))aalg?), (2D))s(?) = Sping(g).
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O-, Spin~, being relative to a non-singular quadratic form which is not of
maximal index over the finite field with g elements. We note that all the
finite groups G, in a given isogeny class and with given o-action on the
Dynkin diagram have the same order [1, p. 371].

3. Reductive subgroups and induced symmetries

Let G, be a o-stable reductive subgroup of G of maximal rank. Let T
be a o-stable maximal torus of Gy, so also of G. Let @ be the root system
of G with respect to 7' and @, be the root system of &,. @ is a subset of the
character group X of T'. Let W be the Weyl group of G and W, the Weyl
group of @,. Let A, be the Dynkin diagram of G,.

Levmma 1. Let W, = Wi be the orthogonal Weyl subgroup to Wy in W.
(W, is generated by the reflections in the hyperplanes orthogonal to roots
orthogonal to all roots in ®,.) Then W, x W, is a normal subgroup of Np(Wy),
and Ny(W,)/Wy x W, is isomorphic to Auty(A,), the group of symmetries
wnduced by W on A,.

Proof. See [4, Proposition 28].

OOROLLARY 2. There exists a natural homomorphism
Nw(W)/ Wy > Aut(4,).
LemwMa 3. Let I1, be a fundamental system in @, and define
Aw(Ily) = {w e W: w(lly) = I1,}.

Then we have Np(W,) = WA (I1,) and Wy n Mp(11,) = 1.

Proof. Let w € Np(W;). Then w(®,) = @,. Hence w(Il,) = ®,. w(Il,)is
a fundamental system in @, so there exists w, € W such that

w(Ily) = wy(Ily).
Hence w,1w(Il,) = I1,, and so W = W, A,(I1,). Moreover,
Wo A1) = N (L)) = 1,

since the only element of the Weyl group which stabilizes a fundamental
system is the identity.

COROLLARY 4. A, (W,)/W, is isomorphic to Ay (I1,).

CoRrOLLARY 5. W, is a normal subgroup of Ny (I1,), and App(I1,)/ W, ts
isomorphic to Auty,(A,).

Proof.” Every element of W which stabilizes I1, stabilizes the orthogonal
system of II,, viz. ®,, and so fixes the Weyl group W, of ®,. Hence W; is
normal in A}, (Il,). Moreover, we have

A (TL)/ Wy 2 Ny (W)/ Wy x W = Auty(B,y),
by Lemmas 1 and 3.
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Now the G -orbits on the set % of o-stable conjugates of @, in @ are in
bijective correspondence with the set of o-conjugacy classes in A}, (W,)/W,.
W, w' is o-conjugate to W, w" if and only if there exists w € W such that

W’ = (M) (W w') (Ww)™.

This correspondence is derived as follows. If G is o-stable then
g°9~! = nliesin N = A(T'), so under the projectionmap=w: N -~ W = N/T
we have w(n) =w. This element w lies in A%, (W) so gives rise to a
o-conjugacy class in A5,(W,)/W, [5]. We shall use frequently the following
result about the structure of the semisimple part M? of such a o-stable
conjugate of G,.

ProrosITION 6. Let g € G satisfy g°g~* = n € N, where
m(n) = w € Ny (W)
Let w map to T under the natural homomorphism Np(W,) - Auty(A,). Then

(M?), is isomorphic to M. (v is here interpreted as the graph automorphism
of M corresponding to the given symmetry of the Dynkin diagram of M.)

Proof. See [5].

We shall now consider the individual types 4,, B;, G, D, separately with
the aim of determining information about the semisimple part (M9), and
toral part (89), of the group (G,?), of o-stable elements in the o-stable
conjugate @47 of G.

Type 4,

Suppose G' has type A4;,, The endomorphism ¢ of G induces an endo-
morphism of the character group X of 7T, also called o, which has the
property that o = go,, where ¢ is a power of » and o, is an isometry of X.
o, has order 1 or 2 depending upon whether G, is split or twisted. X
contains the set ® of roots, and ® can be written conveniently in the form

O ={e,—e:i#75,15€{0,1,...,1}}
where ey, e,,...,¢; form an orthonormal basis of an (I+1)-dimensional
euclidean space. The Weyl group W acts on this space by permuting the
basis elements according to the symmetric group S;,;. o, acts on the roots
either as the identity or as an element of order 2.

The root system of any o-stable reductive subgroup of @ is equivalent
under W to a system @, of the following type. Let A = (A;,A,,...) be a
partition of I+ 1 and let I, I, ... be disjoint subsets of {0, 1, ..., l}' with

Ll =2, L] =2,
Let @, = {¢;—¢; € ®:4,j € I, for some a}. Then @, is a subsystem of ® of
type 4, _;x4,,_1%..., and will be o-stable provided that, when ¢, has
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order 2, @, is stable under the linear map defined by e; > —¢;_;. For each
1, let n; be the number of parts of A equal to ¢. Then the orthogonal root
system @, is of type 4, _; and consists of all e;—¢; € @ with s € 1, j € I,
and |I,| = |I;| = 1. Ap(W,) consists of all permutations which permute
among themselves the I, of a given size. Thus A},(W;)/W, is isomorphic
to S, xSy, % ..., and this is also isomorphic to A5, (Il,), by Corollary 4.
W, is a normal subgroup of A3 (Il,) isomorphic to §,,. Thus W, has a
complement in A};(I1;) isomorphic to Auty,(A,), and we have

Autp (D) > 8, x 8y % ...

Each element of Auty(A,) gives a permutation of the I, of size ¢ for
1=2,3,4,...

Now o acts on A(I1;) ~ 8, xS, x ..., and o acts on each §,, indivi-
dually. Thus two elements w,, w, € #}(I1,) are o-conjugate if and only if
their components in S, are o-conjugate in S, for each i. Let 7,,7, be the
symmetries determined from w,,w, as in Corollary 2. Then w,,w, are
o-conjugate in §,, if and only if oy7; and oy7,, when regarded as permu-
tations of the components of @, of type 4;_,, have the same cycle type.
Let 7 € Auty,(A,). We describe the structure of the components of the
semisimple subgroup (M?), of (G9), when Gy9 is a o-stable conjugate of
G, giving rise to the induced symmetry 7. Since oy7 € S, x 8, % ..., 05T
determines, by its cycle type on §,, a partition u® of n; for each
t=2,3,4,.... For each part u¥; of u*) we have a cyclic permutation of
p9; components 4;_;. We now distinguish between the two possible cases
for o,.

(i) Suppose o, = 1. Then 7 fixes the product of the u®); components
A;_, and by [5] gives rise to the twisted form of a group of type

Ay x A gx... x4, (u; terms)

obtained by combining the cyclic graph automorphism of order u*; with
a field automorphism of the same order over the finite field GF(¢*"") and
taking the fixed points of the product. This procedure gives a group of
type A;_,(¢*"7). Thus the simple components of the semisimple group
(Mo), are of the form A;_,(g#"). Thus we have:

Prorosrrion 7. Let G be a group of type A, and let o be such that G, is
split. Let G, be a reductive subgroup of maximal rank in G corresponding to
a partition A of 1+ 1. Let G,9 be a o-stable reductive subgroup of G obtained
by twisting G, by an element w € W defined by w(g°g—!) = w. Suppose w
maps to T under the homomorphism Ny (Wy) — Auty(A,). Let ng be the
number of parts of A equal to i, so that Auty,(A,) ~ 8, x8,,%.... Suppose
T gives rise to partitions p®,u®, ... of my,ng,... respectively. Then the
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simple components of the semisimple group (M?), are of type A,;_,(g*") with
one component for each 1 = 2,3... and each part p¥; of p®.
The order of the toral part (89), of (G49), ts given by

(g—1)1(89),] = TI (¢*"1-1).
i

Proof. It remains to prove only the formula for the order of the torus
(89),. By [5], (89), is isomorphic to X/P,/(qoow—1)X/P,, where P,
consists of these elements of X expressible as rational combinations of
roots in @,. It follows from this that the order of (89), is x(g), where x(¢)
is the characteristic polynomial of o,w on the vector space X ®Q/P, ® Q.

Now we have

X = {ZG‘Q: a.‘ EZ, za,‘ = 0}.
In X /P, we identify those e; coming from the same component of ;. Thus
X/P, ={Za;é:a,€Z, Ja; =0},
with one term ¢, for each component of G;. We then obtain a contribution
to the characteristic polynomial x(f) from each cycle of o,w on the com-
ponents of G;. In the present case o, = 1, and for each cycle of = of length

', of components of type 4;_, we obtain a contribution t+“1—1 to x(t).
Thus, we have

X6 = I ¢5=1)/=1),

dividing by ¢—1 because of the condition } a; = 0.

(ii) Now suppose o, has order 2. Given 7 € Auty(A,) we again wish to
describe the structure of (3¢), where m(9°g~!) = w maps to . We again
consider the cycles of oy on the components of type 4;_;. Now we have

(M%), = M,, =

qooT?

and this has a simple component for each 7-cycle which is isomorphic to
A, _,{q") or 24,_,(¢%*") depending on whether (c,7)" twists the component
A,_, or not. Calculation shows that if r is even then (o,7)" € W, so cannot
twist 4;_,, whereas if r is odd (oy7)" € oW, so must twist 4, ;. Hence
one obtains a component 4;_;(¢#") when pu'¥; is even, and 24,_,(¢%")
when p(9; is odd. Thus we have:

ProrosiTioN 8. Let G be a group of type 4, and let G, be the twisted form
of G. Let G, be a o-stable reductive subgroup of maximal rank tn G corres-
ponding to a partition X of 1+ 1. Let G9 be a o-stable reductive subgroup of G
obtained by twisting G, by an elementw € W defined by n(g°g~*) = w. Suppose
w maps to v under the homomorphism Ny (W) - Auty,(A,). Let n; be the
number of parts of X equal to 4, so that Auty(A) ~ 8, xS, % .... Suppose
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g, T gives rise to partitions p®, u®, ... of ny,ng, ... respectively. Then the
simple components of the semisimple group (M9), are of type A;_,(q*") for
p', even and of type 24;_,(g") for p9; odd.

The order of the toral part (89), is given by

@+1) (8% = I (¢-1) I (@“+1).
y“’;”even #9jodd

Proof. Again we have verified everything except the order of (89),. As
in the proof of Proposition 7 we must consider the characteristic poly-
nomial (t) of oyw on X/P, ® Q. For each r-cycle of 0,7 on the components
of @, we obtain a contribution to x(¢) of t”—1 if r is even and ¢r+ 1 if 7 is
odd. Finally, we must divide the product by ¢+ 1 to take account of the
condition ¥ a; = 0 in the definition of X.

Type G

Suppose G has type C; and the characteristic of K is not 2. The root
system @ of G may be written in the form

O ={+e ,+e, +2¢:1+#j},

with 4,5 € {1,2,...,1}, where e,,e,,...,¢; form an orthonormal basis of an
l-dimensional euclidean space. The subsystems ®; of ® which are addi-
tively closed (i.e. which satisfy Z®,n® = ®,) may be obtained by the
algorithm of Borel and de Siebenthal [3]. Every reductive subgroup
G,=(T,X,,re®,) has a root system @, which is additively closed
(although this is false in characteristic 2). The additively closed sub-
systems @, are obtained as follows. Let A, . be partitions with [A|+|p] = 1.
Let A= (A, As,...), p = (g, pgs...). Let L, L, ..., J;,J, ... be subsets of
{1,2,...,1} such that [I,| = A,, |J,]| = p, and {1,2,...,1} is a disjoint union
of I,,1,,... and J;,J;, .... Let @, be given by

O, =Ufe,—e: 0 #5,4,) eIa}y{ie‘ie,, +2e;: 4 # j,4,5 € Jg}.
@

Then @, is the root system of a semisimple subgroup of type
Ay x4y 1 x...xCQxCpx...

and any additively closed subsystem is equivalent under W to one of these
given ones.

Now W has order 21! and w(e;) = +e¢; for all w, ¢, and for appropriate j.
W, = W(®,) has order A,!A;!...2Mpu, 120y,1.... Consider the subgroup
N (W,). This consists of all elements of W which permute among them-
selves the components A, of a given rank and the components C, of a
given rank. Let m, be the number of parts of A equal to ¢ and n; be the
number of parts of p equal to ¢. Then we have

| A (W)/ W] = 2mmy 1 2y ..oy mg ...



CENTRALIZERS OF SEMISIMPLE ELEMENTS 9

The orthogonal subsystem ®, has type C, x 4, x ... x 4; with m, factors
4,, thus |W,] = 2™m, | 2m, Hence we have

l./VW(HI)/Wél = m2!2m9m3!2m‘m4! ...nllnz! cen s

Now W, is complemented in A} (I1,) by the subgroup fixing e, for all ¢ in a
subset I, with |I,| = 1. This subgroup may therefore be identified with
Auty (A,). We have

Autpp(A;) = 8, % (Za 1 8,,) X (Z 1 8,,) X oo X 8y x 8y X oy

where Z, 1 S, denotes the wreath product of Z, and §,, of order 2™m!.
Let 7 € Auty,(A,). 7 determines elements of

S Zy * Sy Zy X Sy ..., S,

g s g +ee »

Now each element of a symmetric group can be expressed as a product of
disjoint cycles, and each element of Z, 1 §,, can be expressed as a product
of disjoint positive and negative cycles [4, Proposition 24]. A cycle
e, —> te,—>...~> te; is positive if the sign of the concluding e, is
positive and negative otherwise. Thus the component of = in Z,1 8§,
determines a pair of partitions &%, n® with | €% |+|n®| = m,, where the
parts of £ give the lengths of the positive cycles and the parts of 5
give the lengths of the negative cycles. Also the component of 7 in §,,
determines a partition () of n; giving the lengths of the cycles.

Now consider the semisimple subgroup (M?), of (G.%),, where
7(g°g~1) = w and w — 7 € Auty(A,), as in Proposition 6. Proposition 6
implies that for each part £, of £ this group has a component of type
A;_1(¢*") and for each part 79, of 5 there is a component of type
24,_,(¢2""1). Moreover, for each part (¥, of {" there is & component of
type C,(¢**"). Thus we have:

ProrosITiON 9. Let G be a group of type C over an algebraically closed
Jield of characteristic p # 2. Let G, be a reductive subgroup of maximal rank
in @ corresponding to a pair of partitions A, u with |A|+|p| =1. Let m; be
the number of parts of X equal to © and n; be the number of parts of u equal to
t. Then Auty(A,) = 8, %< (22 8,,)x(Za 1 8,,,)% ... xSy x 8y, x ... Let
G be a o-stable reductive subgroup of G obtained by twisting G, by an
element we W defined by n(g°g~1) = w. Suppose w maps to v under the
natural homomorphism N (Wy) — Auty,(A,). Suppose T gives rise to a pair
of partitions £9,nD with | ED |+ |9 | = m,; (D is vacuous if + = 2) and
partitions [ with | (| = n,. Then the simple components of the semisimple
group (M9), are of type A;_1(q5"), 24,_,(q>""), Cy(qt") with one component
for each part of each £W o, [,

The order of the torus (87), is given by

16891 = TT (¢ =D TT (¢4 +1).
1.3 45
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Type D,

Suppose G has type D;. Then the root system ® of G may be written in
the form @ = {+e;+e;: 9 # 7, 6,5 € {1,2,...,1}}, where e,,e,,...,¢ form an
orthonormal basis of I-dimensional euclidean space. The Weyl group
W(®) has order 2-1/! and consists of all elements w such that w(e;) = +e¢;
and with an even number of negative signs for ¢ € {1,2,...,1}. Let A,u be
a pair of partitions with |A|+|u| =1 such that no part of u is equal to 1.
Let A= (ALAy...), p=(pppg,...). Let I, L, ...,J;,J5, ... be subsets of
{1,2,...,0} such that | [,| = A,, |J,| = p,, and {1,2,...,1} is a disjoint union
of I, L, ...,J;,J, .... Let @, be the subset of ¢ given by

®1= U{e‘—ej: Z. #j, i,j € Iu}lﬂj{teiiei: i ?éj, i,j EQI#}.
-3

Then @, is a subsystem of @ of type 4, _;x4,,_;1x...xD, xD,x....
Moreover, any subsystem of ® is isomorphic to some such ®,, and is
equivalent to @, under some automorphism of @, although not necessarily
under W. It is therefore sufficient for our purpose to consider such
systems ®,. Now W, = W(®,) has order A !A,!...2~" 1y 1261y, 1, .
Consider the subgroup A4,(W,). The elements of A};,(W;) permute among
themselves the components 4, in @ of a given rank and also the com-
ponents D, of a given rank. Moreover, | A5 (W,)/W,| = | W,| | Autyy(A,)].
Let m, be the number of « with A, = 4, and let n; be the number of 8 with
pg = . The subsystem @, orthogonal to @, has type

D, xA;xA,x...x4,

with m, factors 4, if m, > 2 and type 4, x4,x...x4, if m; =0 or 1.
Thus
2m-Ly, 12 ifm, > 1,
| Wl = .
2ma if m; = 0.

Now consider the group Auty,(A,) of symmetries of the diagram of @,
induced by W. This group of symmetries contains permutations of
isomorphic components and also the non-trivial symmetry of A4,, for
a > 2, and D, for a > 2 (although not the symmetries of order 3 in D,).
If m; > 1 we have

Auty,(A,) = 8., X (Ze 1 8,,) X (Zy 0 8p) X o X (Zy 0 8, )X (Zy 1 8,,) % ...,y
since the element w € W inducing such a symmetry can be made to
change an even number of signs by choosing its action appropriately in
the orthogonal space of @, in V. If m; = 0, however, Auty,(A,) is a sub-
group of index 2 in the above. In order to describe this subgroup of index
2 we consider the decomposition into positive and negative cycles of an
element in Auty (A;). Each element of S, is a product of positive cycles
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and each element of Z,1 §,,,Z,1 8,,,,...,Z,1 8,,,Z, §,,, ... is a product
of positive or negative cycles. Now a negative cycle for components
A,, with « even, is induced by an element w € W which changes an odd
number of signs of the e; occurring in the components in the cycle. A
negative cycle for components D, is also induced by an element w which
changes an odd number of signs. However, a negative cycle for components
A,, with o odd, is induced by an element w € W which changes an even
number of signs. Now each w e W changes an even number of signs
altogether. Thus, if m, = 0, Auty,(A,) is the subgroup of

g X (Zg ¥ 8,) X (Zo 18, ) X .. X (Zy 1 8,,) X (Zy 0 8,,) % ...
of index 2 consisting of all elements whose components in
(Zy ¥ 8,) X (Zy 1 8,) X (Zg 1 8,,) X o X (Zg 0 8, ) x (Zg 1 S, ) % ...
have an even number of negative cycles. We have
| N (W)/ Wy | = 3(2™amy | 2, .. 27omy | Q0o 1 )
in all cases.
Let 7 € Auty(A,). Then ogr has components in
S Lo ¥ 8y Zp W Sppy 0y Ly W 8y, Zp 1 8
The component of o4 in Z, 1 S, determines a pair of partitions £, 5
with | 9| +|9'?| = m, (a single partition ¥ when ¢ = 2). The parts of
£9 give the lengths of the positive cycles, and the parts of o' give the
lengths of the negative cycles. Also the component of oyr in Z,1 S,
determines likewise a pair of partitions (¥, w® with |{®)|+]|w®| = n;, the
parts of %), w giving the lengths of the positive and negative cycles
respectively.

Consider the semisimple subgroup (M?), of (@,9),, where n(g°g™) = w
and w maps to T € Auty,(A,). For each part £%); of £ this group has a
component of type A4, ,(¢5"7) and for each part n®; of n'® there is a
component of type 24,_,(¢?""7). Moreover, for each part {; of [ there
is a component of type D;(¢¢") and for each part w®; of w® there is a
component of type 2D;(q2'"").

Thus we have:

ngy cct e

ProrosrTioN 10. Let G be a group of type D, over an algebraically closed
field of characteristic p and let G, be a o-stable reductive subgroup of maximal
rank in G determined by a pair of partitions A, u with |A|+|u|=1. Let m,
be the number of parts of A equal to i, and let n; be the number of parts of p
equal to i (n, = 0). Then

Sing X (Zg W Sp) X (Za 1 8 ) X oo X (Zp 1 8p,) X (Z5 1 8,) % ...
Auty(A,) ~ if my > 0,

a subgroup of index 2 in this if my, = 0.
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Let G9 be a o-stable reductive subgroup of G obtained by twisting G, by an
element w € W defined by n(g°g~1) = w. Suppose w maps to v € Auty(A,).
Suppose ogr gives rise to pairs of partitions £9 n® with | £D|+|n| = m,
(where 7% is vacuous if ¢ =2), and pairs of partitions (), w® with
| D] +| | =n;. Then the simple components of the semisimple group
(M9), are of type A, (g5, 24, (@), Dfgt"s), 2Dy(q*) with one compo-
nent for each part of each &9, 7 () oM.

If m, = 0 the total number of components of type 24,_,, with i odd, and
type 2D, is even if oy = 1, and odd if o # 1.

The order of the torus (89), is given by | (87), | = TT;;(q¢" —1) IT;;(q"" +1).

Type B,

Suppose G has type B; and the characteristic of K is not 2. The root
system @ of G has form ® = {+e;+e;, +e;: i #4,4,5€{1,2,...,0}}. The
additively closed subsystems @, of @ are obtained as follows. Let A, u be
partitions with |A|+|p| < ! and let v = I—|A|—|pn|. Suppose no part of u
is equal to 1. Let I, I,...,J;,J,, ... be subsets of {1,2,...,1} such that
[ I,| = Ay | Jy| = po, and let K be a subset with | K| = v. Suppose {1,2,...,1}
is a disjoint union of 1, I,, ..., J;,d,, ..., K. Let @, be defined by

O =Ule—eii#giije LY seteitjije

U{tete, te i #34,14,5€ K}
Then @, is an additively closed subsystem of type
A, x4, 1%x..xD, xD, x...xB,

and every additively closed subsystem of ® is equivalent to some such
@, under W. Let W, = W(®,) and consider the subgroup A%, (W,). The
elements of A};,(W,) permute among themselves the components 4, of a
given rank and also the components D, of a given rank. Let m; be the
number of parts of A equal to ¢, and n; be the number of parts of u equal
to ©. We have |A(W)/W;|=|W,|.|Auty(A,)]. The subsystem @,
orthogonal to @, has type B, x 4, x 4, x ... x A, with m, components 4,.
Thus |W,| = 2™m, 2™, Now Auty(A,) contains permutations of iso-
morphic components and also the non-trivial symmetries of 4,, where
o > 2, and D,, with « > 2 (although not the symmetries of order 3 in D,).
We have

Auty(Ay) = 8, X (Zg 1 8,,) X (Zg 1 8p) X v X (Zp 1 8,)) X (Zg 1 Sp) X ...

The situation is then similar to the above case of type D, and we obtain
the following result.
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ProrosiTioN 11. Let G be a group of type B, over an algebraically closed
field of characteristic p # 2. Let G, be a reductive subgroup of maximal rank
in G determined by a triple (A, p,v), where A, u are partitions, v is a@ non-
negative integer, and |A|+|p|+v =1. Let m, be the number of parts of A
equal to ¢, and let n; be the number of parts of p equal to 1 (n, = 0). Then

Autp(A)) = 8, % (Z3 1 8,) X (Zp 1 8 ) X ... X (Zp 1 8,)) X (Z, 1 8 ) % ...

Let @9 be a o-stable reductive subgroup of G obtained by twisting G, by an
element w € W defined by m(g°g~) = w. Suppose w maps to T € Auty(A,).
Suppose T gives rise to a pair of partitions £, with | £ | +|7®| = m,
and a pair of partitions {'V, w™® with || +|w?| = n; such that the parts of
these partitions give the lengths of the positive and negative cycles in the
components of . Then the simple components of the semisimple group (M?),
are of type A;_,(g5"),24;_1(¢*""™), Dy(¢*"™), 2Dy(q*"“"), B,(q) with one com-
ponent for each part of each £%), 79 () ),

The order of the torus (8°), is given by | (89), | = TT1;;(¢5 —1) [T ;(q" +1).

Type B, in characteristic 2

Suppose G has type B, and K has characteristic 2. Then @ is isomorphic
as an abstract group to a group of type C, over K. It will therefore be
sufficient to consider the reductive subgroups of a group of type B, in this
case. The root system @ of @ has form

o= {ietie,, iei: % ‘-léj’ 1:!.7. € {1’2""’1}}'

Since K has characteristic 2 we must consider all subsystems @, of @, not
merely those which are additively closed, since all such subsystems give
rise to reductive subgroups G4 = (T, X,: r € ®,> of G. The subsystems
@, are obtained as follows. Let A, u,v be partitions with |A]|+|p|+]|v] =1,
where no part of p is equal to 1. Let A= (A, Ay, ...), 1= (uy, M2 ---)s
v=(v,vy...), and let L, L, ....J;,d, ..., K;, K,, ... be disjoint subsets of
{1,2,...,0} with |L| = A, |Jy| = pe | Kyl = v, Let @, be defined by

O, =Ufes—e:i#j,0,je L}U{+ete;: i #7, 6,5 €}
<3 +3
U{ze+e, te:i#j,4,1i€K};
[+ 4
@, is a subsystem of type 4, _; x 43,y % ... x D, x D, x...x B, xB, % ....

Moreover, any subsystem of ® is equivalent to some such ®; under W.
We have

W = A0 20—y QT ) | 2y 2oy, )

The elements of A},(W;) permute among themselves the components 4,
of a given rank in @, also the components D, of a given rank and the
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components B, of a given rank. Let m, be the number of « with A, = 3, n,
be the number of o with p, =4, and p; be the number of o with v, = ¢.
The subsystem ®, orthogonal to @, has type B, x 4, x 4, x ... x 4; with
my components 4,, thus | W,| = 2™m, ! 2m. Consider the group Aut,(A,).
This contains permutations of isomorphic components and also the non-
trivial symmetries of 4,, with « > 2, and of D,, with « > 2 (but not the
symmetries of order 3 in D,). We have

Autp(A,) = 8, X (Zg 18, ) X (Zg 1 Sp) X voe X (Z3 1 8,) X (Zy 1 8, ) X ..

X8y x8p, X ..
We then obtain the following result.

ProrosiTioN 12. Let G be a group of type B, over an algebraically closed
field of characteristic 2. Let G, be a reductive subgroup of maximal rank in
G determined by a triple of partitions A,u,v with |A|+|p|+|v|=1. Let
my, 0y, P; be the number of parts of A, p, v respectively equal to s (n, = 0). Then

Autpp(A)) = 8y X (Za 1 8 X (Zg 2 8p) X oo X (Zg W8, ) X (Z 1 8,) % ...
X 8p, X 8p, X wunn

Let G7 be a o-stable reductive subgroup of G obtained by twisting G, by an
element w € W defined by m(g°g~) = w. Suppose w maps to T € Auty,(4,).
Suppose T gives rise to pairs of partitions D, n® with | D | +| 9P| = m,,
pairs of partitions {9, w0 with |{D|+]|w®| = n,, and partitions y with
|y | = p, such that the parts of these partitions give the lengths of the positive
and negative cycles in the components of . Then the simple components of the
semisimple group (M9), are of type A;_,(¢*™), 2A;_1(¢*"™), Dy(g*™),
2D,(¢%"s), B;(q"""), with one component for each part of each £4), 7, L), '),
(%)
4 The order of the torus (S7), is given by

(8% =TI (g€ -1) II (g7 +1).

4. Criteria for being a connected centralizer

We now consider the following question: given a reductive subgroup G,
of maximal rank in G and a twisting element w € A%,(W;), when is a
corresponding subgroup (G,9), of G, (determined to within conjugacy in
G, by §2) the connected centralizer of a semisimple element of G, for values
of ¢ sufficiently large? For this to be true it is clearly necessary (though not
in general sufficient) that G, should be the connected centralizer of some
semisimple element of G.

We shall answer this question when G is a group of classical type
A, B,,C, D,, and the answer will in general depend upon the isogeny type
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of G. We begin by giving a summary of results, which will be justified in
the subsequent sections of the paper. These results are given in two tables.
Table 1 gives the condition for a connected reductive subgroup G, of
maximal rank in G to be the connected centralizer of some semisimple
element of G@. (We assume p # 2.)

TaBLE 1
Condition for G, to be the connected
Type of G centralizer of a semisimple element
A, None
G, @, has at most two components of type C
B, @, has at most one component of type D
D, @, has at most two components of type D

Table 2 gives the additional condition (i.e. in addition to the necessary
condition given in Table 1) for the finite group (G,?), to be the connected
centralizer of a semisimple element in G, when ¢ is sufficiently large. This
additional condition will depend on the isogeny class of G and on the
twisting element w € W given by =(9°9~!) = w.

TABLE 2
Type of G Isogeny class of G Additional condition for (G,?),

A, All None

C, Adjoint None

C, Simply-connected  If there are two components of type C these
cannot be interchanged by w

B, Adjoint None

B, Simply-connected  If there is a component of type D then (G,%), is
not a critical subgroup of G,

D, Adjoint None

D, SOy, If there are two components of type D these
cannot be interchanged by w

D, Half-spin group If there are two components of type D which are

not interchanged by w then (G,?), is not a
critical subgroup of G, of the first kind. If
there are two components of type D which are
interchanged by w then (G,9), is not a critical
subgroup of G, of the second kind

D, Simply-connected  If there are two components of type D, these
cannot be interchanged by w and (G,9), is not
a critical subgroup of G,

In Table 2 a critical subgroup (G,?), of G, is defined as follows.
(a) If G is a simply-connected group of type B, the critical subgroups of
@, have form (G,?), where
(i) G, has type 4, _;x A,y x...xD,x B, with ;; + A, +... +p+v =1,
p# 0, AL, Ay, ... all even, and
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(ii) (Gy%), has an untwisted component D (q) if 4(¢—1)u is odd, and a
twisted component 2D,(q?) if (g —1)p is even.
(b) If @ is a simply-connected group of type D, the critical subgroups of
G, have form (G,9), where
(i) G, has type 4, x4, _,x...xD, xD, with

/‘1+A2+...+[1v1+[1—2 = l,

U gy # 0, pg # 0, A, Ay, ... all even, and
(ii) (G,%), has an untwisted component D, (q) if (g —1)u; is odd, and a
twisted component 2D, (¢?) if $(¢— 1)y, is even, for ¢ = 1,2.
(c) If G is a half-spin group of type D, the critical subgroups of @, of
the first kind have form (G,?), where
(i) G, has type 4, _;x 4,,_;x...xD, x D, with

A1+A2+-u +#1+I~L2 = l,

1 # 0, o # 0, A, A,, ... all even, and
(i) (Gy9), has an untwisted component D, (q) if $(—1)u; is odd, and &
twisted component 2D, (¢?) if (g — 1), is even, for s = 1, 2.
(d) If @ is & half-spin group of type D, the critical subgroups of G, of
the second kind have form (G,?), where
(i) G, has type 4, _;x A4, ;x...xD,xD, with\;+A+...+p+p =1,
u# 0, AL Ay, ... all even, and
(ii) (G,%), has a component D,(¢?); and M = vmod 2 if }{g—1)u is odd
and M s vmod 2 if }(¢— 1)u is even.
Here M, v are defined as follows. M is the number of simple components of
form 4, _,(¢°) or 24,,_,(q?), where X; = 2mod 4 and e is odd. v is 0 if w
induces the positive graph automorphism on D,+ D, and 1 if w induces

the negative graph automorphism. (For the definitions of the positive and
negative graph automorphism, see Proposition 18.)

Finally, we explain the situation when K has characteristic 2 by giving
the versions of Tables 1 and 2 which are valid in this case.

TaBLE 1 (characteristic 2)

Condition for @, to be the connected
Type of @ centralizer of a semisimple element

A,,B,,C,, D, G, is the reductive part of some parabolic
subgroup of @

TABLE 2 (characteristic 2)

Type of @ Isogeny class of G Additional condition for (@,?),

A, B, C,, D, All None
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5. Groups of type C;

In §§5, 6, and 7 we shall justify the statements made in Tables 1 and 2
of §4. Throughout these sections G, will be a connected reductive sub-
group of maximal rank in G, W; will be the Weyl group of G, w will be an
element of A}, (W), and G,¢ will be a o-stable subgroup of G obtained by
twisting G, by the element w, where #(g°g~!) = w. T will be a o-stable
maximal torus of Gy, so also of G, and X will be the character group of T'.
P, will be the subgroup of X generated by ®, and P,/ P, will be the torsion
subgroup of X/P,. ®, is defined by ®, = ®n P,.

The results from [5] which we shall use are as follows.

[5, Proposition 11] G, is the connected centralizer of some semisimple
element of G if and only if P,/ P, has a regular character of order prime to p
(a regular character being one which does not annihilate P, +r for any root
re® —0,).

[5, Propositions 17, 19] (G,9), is the connected centralizer of a semisimple
element of G, for q sufficiently large if and only if the group

[ = X/(P,+(ow—1)X)

has a character which does not annihilate any root in @, — ®@,.

If G is of type 4;, then (G,9), is always the connected centralizer of a
semisimple element of G, for ¢ sufficiently large, since @, is a Levi sub-
group of a parabolic subgroup of G and so @, —®, is empty.

We now consider the situation when G has type C; and when K has
characteristic p # 2. Let ® = {+e;+e;, +2¢;:4+#j,4,5€{1,2,...,1}} be
the root system of G, and let Gy be the reductive subgroup with root
system @, given by

O, =Ufe;—e;:i#5, 6, e LYU{+e;+e, +2:0#],1,5 €},
[+3 o

as in §3. Here |I,|=A,, |Jy] =pe and A= (A, A, ...), p = (pp pay --)
satisfy |A|+|u| = 1. D, is a root system of type

Ay xAp4%...xC,xCpx....

We use the result of [5, Proposition 11]. Since P,/P, is the torsion
subgroup of X/P, we have P,/P, = Z,®Z,® ... ® Z, with one component
Z, for each part of n. If u has at least three parts, let é,, é,, é; be images in
P,/ P, of elements ¢,, e,, ¢; € X in the components of type C corresponding
to three parts of u. Let ¢ be any character of P,/P,. Then {)(é,~é,) = +1,
Y€y —é3) = £ 1, Y(é,—é;3) = + 1. Moreover, if

e, —&) = —1 and Y(&—&)= -1,
5388.3.42 B
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then yi(é, —&;) = 1. Thus each character of P,/ P, annihilates some element
of ®,—®,. Thus P,/P, has no regular character in this case.

If u has less than two parts then ®, = ®,. If u has exactly two parts
then @, — ®, consists of a single non-zero element of P,/P,. Thus there is
some character of P,/P, which does not annihilate it. Thus if p has less
than three parts P,/ P, has a regular character. This justifies the entry in
Table 1 for type C,.

In considering the corresponding problem for (G4¢), we can thus restrict
attention to the case when p has at most two parts. If u has less than two
parts we have @, = ®, and G, is a Levi subgroup of a parabolic subgroup
of G. The situation is clear in this case by [5, Theorem 21]. We may
therefore assume that u has exactly two parts. The result may depend
upon the isogeny type of G, and we therefore consider separately the cases
when @ is simply-connected and adjoint.

The simply-connected case

Suppose G is simply-connected. Then the group X of rational characters
of a maximal torus 7' of @ is generated by the fundamental weights
d1,9s, - ., q;, which are defined by

(@4 20,/ (24, 05)) = 8igs
where IT = {p,,p,, ..., p;} is the set of fundamental roots. In the present
context, since e, e,, ..., ¢, form an orthonormal system, we may take

Pr=e—6€, Py=¢€—€, .., P1=€1—€ P=2¢
and we then have
G1=¢6€, Ga=¢€+e, .., Qi=¢€te+..+€_;, G=e+e+..+e.
Hence X = {3} ,a.;:a,e€Z}. Now we must consider the quotient
I' = X/P, + (qw—-1)X according to [5, Proposition 17]. We have

'z X/5
= (A+(qw-1)X)/F’

and we first consider X/P,. Let e; - é; under the natural homomorphism
X —» X/P,. Then é; = é; when i,j € I,, and é; = ¢;, 2¢; = 0 when ¢,j € J,.
Thus X/P, is generated by elements é;, one for each I, and by elements

é; satisfying 2¢; = 0, one for each J,. Since u has exactly two parts we have
two elements é;, ¢;, of the latter type and so

X/P27207®...02,07Z,,

with one component Z for each part of A.
Let w € #4(W,) and let w map to 7 € Auty(A,). By Proposition 9,
Auty(A,) = Sy X (Zg 1 8,,) X (Zg 1 8,) X oo x 8y X 8 x ..., and 7 gives
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rise to pairs of partitions £®, ¥ with |£®|+ |9 | =m, and partitions
{% with |{®¥| =mn,. The parts of these partitions correspond to the
positive or negative cycles induced by w on the components of a given
type.

In order to pass from X/P, to I' we impose additional relations
(qw—1)x =0 for all xe X. If w(e)= +e; we have é; = +¢é; in T
Suppose é; is one of the generators of X /P, of infinite order which lies in
a positive cycle of length k under w. Then we have ¢*é; = ¢, in I". If ¢;
lies in a negative cycle of length k we have g*¢; = —¢;in I'. Since ¢ is odd
we do not obtain additional relations on the generators ¢;,¢; of order 2
by passing from X /P, to I', except that we shall have ¢; = ¢; in I' if the
two components of type C are interchanged by w. Thus each positive
cycle of length k& on components of type 4 contributes a factor Z,_, to I'

and each negative cycle of length k on components of type 4 contributes
a factor Z,,, to I'. Moreover, I' has one or two factors Z, depending upon
whether w interchanges the two components of type C or not. Thus I'is
a direct product of cyclic groups of order g¢“s — 1 for all £%, g7 + 1 for all
7., and either one or two copies of Z,.

Now we must consider the images in I' of the roots in @, —®,. @, is a
root system of type 4, _,x4,_,x...x0,,, and ®, - ®, consists of
roots +e;+e;, where ¢ € J,, j € J, and « # B. The required condition, by
[8, Corollary 20], is that there is a character of I' which does not annihilate
the image in T’ of any element of ®, —®,. This certainly means that
Ja,Jﬂ, with « # B, cannot be in the same w-orbit. For otherwise, _taking
J1 € Jys Ja € Jp, we would have +é; +¢;, = 0in I'. Thus all roots in @, — @,
would map to zero in I'.

Suppose, on the other hand, that w leaves invariant each of the two
components of type C in G;. Then the image of ®,—®, in I is &, +¢,,
where j, € J,, j, € J;. Thus the image of ®,—®, in I'is é;,+é,,, where
J1 € Jy, j2 € Jy. Thus the image of @, — @, in I consists of a single element
of I" of order 2. It is certainly possible to find a character of I' which does
not annihilate this element. This justifies the entry in Table 2 for simply-
connected groups of type ;.

The adjoint case

Now suppose G is an adjoint group of type C;. Then the group X of
rational characters of the maximal torus 7 is generated by the root system
®. Thus X ={3}_,a,e;:a,€2Z, 3\ _a, is even}. As before, we have
é;—¢;=0in X/P, when ¢,j€l,, and é;,—¢ =0, 26, = 0 when 3,j € J,.
Thus X/ P, is the set of elements Y a6, with one ¢; for each component of
®, such that 3 @, is even and a, € {0, 1} if ¢, corresponds to a component of
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type C. The torsion subgroup P,/P, of X/P, is the set of 3 a,é; such that
each é; corresponds to a component of type C and ¥ a; is even. Now we
are assuming that there are exactly two components of type C—suppose
they give rise to elements ¢;,¢é; of X/P,. Thus the torsion subgroup
P,/P, is generated by ¢; +¢;,.

We consider the additional relations needed to pass from X/P, to its
quotient group I'. These relations have the form (qw—1)x =0 for all
z € X. Detailed calculation in the group I' shows: '

Lemma 13. Suppose @, has exactly two components of type C which are
interchanged by w. Then I is isomorphic to the abelian group with generators
¢, d; (ome pair for each w-orbit of type A), and é;—é; (one term for each pair
of distinct w-orbits), subject to the following relations:

(i) when k = £49),,
0 if kis even,
He¥-1)d; = ( iy
¢; if kisodd;
(ii) when k = o),
0 if ks even,
gk +1)d; = { crq s
c; if kisodd;
(iii) ¢; = ¢, for all pairs of w-orbits;
(iv) 2¢; = 0 for all orbits;
(V) (€= &)+ (&— &) = (&—&);
(vi) 2(é;— &) = e, d;—e;d;, for certain integers e;, ;= +1.

We write ¢ = ¢, for all 3.

Now the image of ®,~®, in I' consists of the single element ¢; +¢;,
which is identified with the element ¢. We must therefore decide whether
or not ¢ = 0in I'. The following lemma simplifies the discussion.

LeMMA 14. We have ¢ = 0 in I if and only if ¢; = 0 in some two generator
subgroup {c;,d;> subject to the relations (i) or (ii) respectively of Lemma 13
and also subject to the relation 2c; = 0.

Proof. Consider the subgroup I'; of I' generated by elements c;,d; (one
pair for each w-orbit of type 4). I'yis generated by two-generator sub-
groups {¢;,d,>, and Lemma 13 shows that the only relations in T’y in-
volving generators from distinct subgroups {c;,d,> are those identifying
¢; in the different two-generator subgroups. I'; is therefore isomorphic to
the direct product of the two-generator subgroups with ¢; amalgamated.
Hence ¢; = 0 in 'y if and only if ¢; = 0 in some two-generator subgroup

<c{s di) .
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We now observe that in the two-generator groups {c;, d,>, with relations
(i) or (ii) holding together with 2¢, = 0, we have in all cases ¢; # 0. It
follows from Lemma 14 that ¢ % 0in .

This completes the discussion of the adjoint group and we have justified
the entry in Table 2 for this group.
We note that the simple components of (G,), can be of type 4;_,(¢5"),

24,_,(g*"™), Cy(q), or Cy(g?).

6. Groups of type B, ‘

Suppose @ is a group of type B, over an algebraically closed field K of
characteristic p # 2. Let ® ={te,+e;, +e;:05#7,4,5€{1,2,...,1}} be
the root system of G and let G, be a reductive subgroup with root system
@, given by

(Dl": U{ei_eﬁi#j’ i’jEIa}U{ieiieﬁi#"j’ i,jEJa}
a o

U{i’eiiej) iei: i #j: i:j € K}’
where {1, 2, ...,1} is the disjoint union of subsets L.L,...,J,,J,, ..., K asin
§3. Here |L,| = A, |Jy| = po | K| =v, and A= (A, 2, ... ), 0 = (piy, gy - ),
and v satisfy [A|+|p|+v =1. @, is a root system of type

Ay x4, 1x...xD,xD, x..xB,

We use the result of [5, Proposition 11]. The torsion subgroup
P,/P, of X/P, satisfies P,/P, ~ Z,®Z,® ... with one component for each
part of u. The roots in &, —®, have the form e, te;, where 4,j lie in
distinct sets Jj, J;, ..., K, and also +e; where ¢ lies in a component of type
J. Thus the images of @, —®, in X/P, are the elements &, corresponding
to components J, and the elements ¢, — é; corresponding to pairs of distinct
components J,,J;. For each character ¢ of P,/P, we have ¢(é;) = +1. If
Y(é;) = —1 and yi(¢;) = —1, then ¢(é;—¢;) = 1. Thus if there are two
distinct components of type J, then P,/P, has no regular character. If
there is just one component J, the image of ®, —®, in P,/P, contains a
single element ¢; and this element has order 2. Thus P,/P, has a character
of order prime to p which does not annihilate this element. Finally, if there
is no component J, we have ®, = ®,. This justifies the entry in Table 1.

We now turn to the finite group (@,?),. If u has no parts then @, = @,
and G, is a Levi subgroup of a parabolic subgroup of G. Theorem 21 of
[5] then gives the required information. If p has more than one part we
have just seen that (G,7), cannot be the connected centralizer of a semi-
simple element. We shall therefore assume from now on that p has exactly
one part, i.e. that G, has just one component of type D. We must now
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distinguish between the different isogeny types for G, since G' can be either
adjoint or simply-connected.

The adjoint case

Suppose G is of adjoint type. Then the group X of rational characters
of a maximal torus 7T is generated by the fundamental roots. In the
present context the fundamental roots p,,p,,...,p, and fundamental
weights ¢,,¢,, ..., are given by

Pr=¢€—¢€, Py=¢€3—€3 ..., D1=€1—€, P =2¢,
Gi=¢6, Ga=¢€,+e, ..., =€, +e+...+e,y, =13, +e+...+¢).

Hence X = {I}_,a.,;: a, € Z}. Let ¢; > ¢; be the natural homomorphism
X —» X/P,. Then ¢; = ¢; when ¢,j € I,, and é; = ¢;, 2¢; = 0 when 3,5 € J,.
Also ¢, = 0if ¢ € K. Hence X/P, is generated by elements ¢;, one for each
I,, and by elements ¢; satisfying 2¢; = 0, one for each J,. We are assuming
that there is only one J,. Hence X/P, 2 Z®Z® ... ®Z,, with one com-
ponent Z for each part of A.

Let w € A(W,) and let w map to 7 € Auty(A,). By Proposition 11 we
have

Autg(A) = 8, % (Z3 1 8,,)) X (2,1 8,,) X ... X Zy,

where m; is the number of parts of A equal to ¢. Suppose 7 gives rise to a
pair of partitions ¢%,9® with |9 |+|n®| = m,, where the parts of the
partitions give the lengths of the posmve and negative cycles on the
components of type 4;_,.

In order to pass from X/P, to I' we impose additional relations
(qw—1)x =0 for all x € X. If w(e;) = +e; we have ;= +¢¢;in I". If ¢;
is one of the generators of type A which lies in a positive cycle of length
k under w then we have ¢%¢;, = ¢, in I'. If ¢ lies in a negative cycle of
length & we have ¢¥¢; = —¢, in I'. Thus I' is generated by elements ¢,
one for each w-orbit of type 4, and by an element ¢; subject to relations

(¢*—1)¢; = 0 for positive k-cycles,
(¢*+1)é; = 0 for negative k-cycles,
26, = 0.
Thus I' is a direct product of cyclic groups of order ¢gf“s—1 for all
g9, 1"+ 1 for all 7, and one copy of Z,. The image of ®,—®, in T is
given by the single element ¢;, and this element is non-zero in I'. Thus

there is a character of I' which does not annihilate it. This justifies the
entry in Table 2 for adjoint groups of type B;.
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The simply-connected case
Suppose @ is a simply-connected group of type B,. Then X is generated
by the fundamental weights ¢,,¢,, ...,¢;. Since we have

G1=6€, Ga=e,+€, ..., Guy=e1+e+...+¢,, ¢=3e +e+...+e),

it follows that X is generated by e;,e,,...,¢,q. Moreover, X/P, is
generated by elements é;, one for each I, by an element ¢; satisfying
2¢; = 0, and ¢,

Let w € A (W) and let w map to = € Auty,(A,). By Proposition 11 we
have

Auty(B,) = 8y x (231 8,,) X (Z2 1 8),) X ... X Zy.

Suppose = gives rise to a pair of partitions £%), 7 with | 9| +|5¥| = m,,
where the parts of the partitions give the lengths of the positive and nega-
tive cycles on the components of type 4,_,. In order to pass from X/P,
to I' we impose additional relations (qw—1)x = 0 for all z € X, and it is
convenient to distinguish between two cases depending on whether w
induces the trivial or the non-trivial automorphism on the single com-
ponent D, of type D.

Case 1. Suppose w induces the trivial graph automorphism on D,.
Then I is generated by elements é; corresponding to the w-orbits on the
components of type 4, by é; coming from the component D,, and by .
Also 2g; = X} _, e;. If pis even, 2§, is a linear combination of the é; of type
4, whereas if p is odd, 2§; = (é;+a linear combination of é; of type 4).
We obtain a complete set of relations by taking (qw—1)é; = 0, (qw—1)g, = 0,
since (qw—1)é; = 0 is a consequence of 2¢; = 0.

The image of @, —®, in I' consists of the single element é;, We must
therefore decide whether the relations imply é; = 0. It is clear from the
above system of relations that the only relation which could possibly
imply é; =0 is (qw—1)§; = 0. Now w(7)—¢; is a linear combination of

"é;’s and does not involve ¢, since w induces the trivial graph automorphism
on D,. Thus the relation (qw—1)¢; = 0 has the form

(g —1)q; = linear combination of ¢;’s,
or, alternatively,
4(¢—1) (2¢;) = linear combination of ¢;’s.
If pu is even, 2g; is a linear combination of ¢;/s and does not involve é;.
Thus in this case the relation (qw—1)g; = 0 does not involve ¢;. In the
quotient group of I' obtained by imposing the additional relations é;, = 0

we thus have é; # 0. Thus if 4 is even we have & #0inT.
Suppose u is odd. Then

2¢; = ¢;+a linear combination of é;’s.
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If ¢ = 1 mod 4 the relation
#(g—1)(2¢;) = linear combination of é;’s
does not involve ¢; since (¢ — 1) is even and 2¢; = 0. Thus if y is odd and
¢ =1mod4 we have ¢; # 0in I".
Thus we may concentrate on the remaining case when p is odd and

¢ =—1mod4. Here it is more difficult to decide whether & = 0 in T'.
The relation (qw—1)g, = 0 has the form

¢; = a linear combination of ¢s,

and we must decide whether the right-hand side is zero. I' is generated
by elements é;, one for each w-orbit of type 4, by ¢;, and by g, subject to
relations

(qw—-1)g; =0, 26;=0, 2q= (Xl ¢) (qw—1)§=0.
The relations (qw—1)¢; = 0 imply that (g¥*—1)é; = 0 if é; is associated
with a positive cycle of length &, and (g% + 1)¢; = 0 if ¢; is associated with
a negative k-cycle. The effect of the relation (qw—1)g; = 0 can best be
seen by replacing ¢; by another generator whose definition depends on w.
Suppose we express w as a product of positive and negative cycles on the
elements e;,e,,...,¢. Let (e;, &56, 658, ..., 6,6, ) be a typical cycle, where
w(e,e;) = te,. Let x € X be defined by
z=13% 3 (e+ees,+eg8+ ... +6,8),

cycles

with one summand for each cycle. (Note that the definition of  depends
upon the choice of a first element e; in each cycle.) X is generated by
€y,€, ..., and x. We shall replace ¢; by Z as the final generator in I'. Now
we have

e, +esey,+... +ee;)

for a positive cycle,
w(k(e;, + s+ ... +e0,)) =
$e, +egeq,+ - 500 ) —ey

for a negative cycle.

Thus w(x) = z— X e, with one summand e, for each negative cycle. Thus
in X /P, we have

(qw-1)F = (g-1)Z-gX¢;,
summed over negative cycles in X.

We consider next how the cycle (e;, ex;, ..., £,¢;) of w on the elements
+e; gives rise to a cycle of w on the components of a given type in @,.
Suppose the ¢; in the cycle correspond to components in @, of type 4, _,.
Let k be the least positive integer such that e, corresponds to the same
component in ®, as e;. Then k divides . Let r = ks. Then in X/P,, we
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see that w induces a corresponding cycle (¢, &2, ..., &¢;,) of length k on
the components of type A,,_,. There will in general be several cycles
(€4, €984, ---» £,6;,) giving rise to a single cycle (€, .6, ...,&¢E;,) in X/P,.
The number of such cycles of w in X mapping to a given cycle in X/P,
is A;/s. We distinguish between three possibilities. If ¢, = 1 we have a
positive r-cycle in X which induces a positive k-cycle in X/P,. If
&.41 = — 1 and s is even we have a positive r-cycle in X which induces a
negative k-cycle in X/P,. If ¢, = —1 and s is odd we have a negative
r-cycle in X which induces a negative k-cycle in X/P,.

Now each r-cycle (e, €26y, ..., &,¢5,) of w in X contributes
$(es, + 608+ ... +608,)

toward the element x. It therefore contributes (¢, +&:6;,+ ... +¢,é;)
toward £ € X/P,. We consider the nature of this element in the three

cases above. If we have a positive r-cycle in X inducing a positive k-cycle
in X /P, then

%(éﬁ + €2éi’ + R Eré.t') = %S(é’il + 82éia +...4+ Eké{').
If we have a positive r-cycle in X inducing a negative k-cycle in X /P, then
%(éﬁ + 823-1:2 +...+ Eréi,) =0.
If we have a negative r-cycle in X then
3@t el + .. +6,8,) = $(E + ey + ... +88,,).
We now take together the contributions to Z from all r-cycles in X in-

ducing a given k-cycle in X/P,. Since there are A;/s such r-cycles we have
a contribution to & given by

%"‘(éﬁ + 826.1:, + con + ské‘ik)’
where
A;  for a positive r-cycle inducing a positive k-cycle,

ax={0 for a positive r-cycle inducing a negative k-cycle,
A,/s for a negative r-cycle.

Moreover, the contribution to # from the component D, is }¢;, since p is
odd. Thus we have

T =3 dal8y +enly,+ ... +68;,) + 36
summed over the w-orbits on components of type 4 in @,. It follows that
(qw—1)x = (g—1)—¢ X €é; (summed over negative cycles in X)
= D Hq— D)o (&, + &2, + ... +58,) — 9 T &, + Ha - 1)g;,

the latter sum being taken over all negative cycles of type 4 in X, since
w induces the trivial graph automorphism on D, and therefore has an
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even number of negative cycles on the ¢; in D,. Since ¢ = —1 mod4 we
have
(qw—1)% = Z3(q— 1)o(&;, +eaby, + ... + £8,) —q L (Ai/8)é + ¢,
the latter sum being taken over all negative cycles of type 4 in X/P,,

since each negative cycle in X/P, comes from A;/s negative cycles in X.
Thus the relation (qw—1)Z = 0 in I' implies that in I" we have

& = 2 Hg— V)ol8;, + 8083, + . +82,) — 9 2 (N/9)8;,,
the latter sum being taken over all negative cycles of type 4 in X/P,.
But we also have é; = ge,6;, = ¢%¢3é;, = ... in I'. Hence, for the positive
k-cycles, we obtain

g — Vo6, + 628y + .- +818,) = AT - 1)é;,

and, for the negative k-cycles induced by negative r-cycles, we have
g — D)l +e085, + ... +88;,) —9(X/9)é;,

=#g-D)A/8) (1 —g—¢*— ... —¢“1)g;, —g(\i/3)éy,
—3(A/8) (¢* - 1), — (A\/8)é,,

= —3(N/8) (g% + 1),
Hence the relation (qw—1)Z = 0 in T is equivalent to

& = DIN(* - 1)é;, — T 3(N/3) (¢° + 1)é,

where the first sum extends over all positive k-cycles on X/P, and the
second over all negative k-cycles on X /P, induced by negative r-cycles on

X. Thus I is generated by elements é;, one from each w-orbit on com-
ponents of type 4, by é; and by Z subject to the following relations:

(¢*—1)é, = 0 if ¢, is in a positive k-cycle;

(g“+1)é, = 0 if ¢ is in a negative k-cycle;

2% is a linear combination of ¢; and é;’s;

& = ZIN(¢*—1)g— Z 3 A/8) (g* + )&
It follows that & = 0 in I' if and only if A, is even for each positive cycle
on X/P, and A,/s is even for each negative cycle on X/P, induced by a
negative cycle on X. The condition on negative cycles may be stated
alternatively as follows. For each negative cycle on X/P, we have A;/s
even whenever s is odd. This is equivalent to asserting that A; is even for

all negative cycles of w on X/P,. Thus ¢; = 0 in I if and only if all com-
ponents 4, _, of @, have A even.
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Thus, if w induces the trivial graph automorphism on D,, then (G,9), is
the connected centralizer of a semisimple element unless p is odd,
g = —1mod4, and all A; are even.

Case 2. Suppose w induces the non-trivial graph automorphism on D,.
This is equivalent to the condition that w has an odd number of negative
cycles on the elements e, appearing in D,. TI'is generated by elements é;
corresponding to w-orbits of type 4, by é; coming from the components

D,, and by §;. Also we have 2¢; = (X_, ¢;) and 2¢; = 0. We have relations
(qw—1)é; = 0 and (qw—1)¢; = 0; and (qw—1)¢; = 0 is a consequence of
2¢; = 0. Again we must decide whether é; = 0 in I'. The only relation
which could imply this is (qw—1)§; = 0. Now ¢; = 4(e; +e3+...+¢) and
so we have
w(@) —§; = é;+a linear combination of &s,
since w changes an odd number of signs for ¢,’s belonging to D,. Hence
(qw—1)q; = é;+4(g—1) (2¢;) + & linear combination of és.

Suppose w is odd. Then 2§; = é;+ a linear combination of é;’s. Suppose in
addition that ¢ = —1 mod 4. Then }(g— 1) (24;) = ¢;+ a linear combination
of é’s. Hence in this case (qw—1)g; = 0 does not imply & = 0. Thus
é#0in T

We shall therefore assume that either u is even or p is odd and
¢ = 1 mod4. The relations (qw—1)é; = 0 imply that (g¥—1)é; = 0 if ¢; is
associated with a positive &-cycle and (¢* + 1)é; = 0 if ¢; is associated with
a negative k-cycle. We shall again replace the remaining generator ¢ by
the element # whose definition depends on w. As before we express w as a
product of positive and negative cycles on the elements e;,e,,...,¢. Let
(84,5 €24y €384, ---» E,84,) DO 8 typical cycle, where w(e,e;) = te,. Then we
define x by

=% 3 (e +egs+...+¢,6),

cycles

with one summand for each cycle. We calculate & as before and obtain
% = X da(é; + €56, + ... + §,6;,) +a multiple of ¢,
summed over w-orbits of type 4, _;, where « is given by
A;  for a positive r-cycle inducing a positive k-cycle,
a={(0 for a positive r-cycle inducing a negative k-cycle,
A;/s for a negative r-cycle.

Consider the element (qw—1)Z. The contribution of ¢ to (qw—1)Z is
47(q — 1)é; from each positive r-cycle on the e¢;’s in D, and (3r(g—1)—q)é;
from each negative r-cycle. Since there are an odd number of negative
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cycles on the ¢,’s in D, the contribution of ¢; to (qw—1)% is

(Bulg—-1)-9)¢; = ¢,
since 2¢; = 0 and 4u(q— 1) iseven. The remaining contributionsto (qw—1)Z
are as before and we have

(qw—1)% = T 3A(g* - 1)g;— X §(A/s) (¢*+1)8;+ &5,
where the sums extend respectively over the positive k-cycles on X/P,
and the negative k-cycles on X/F, induced by negative r-cycles on X.
(Here r = ks.) Thus the relation (qgw—1)Z = 0 is equivalent to

& = 2IN(g*— 1)é;— X 3(N/s) (¢F + 1)é;.

Hence é; = 0 if and only if }; is even for all positive cycles on X/P, and
A;/s is even for all negative cycles on X /P, induced from negative cycles
on X. As before, this is equivalent to the assertion that all A; are even.
Thus if p is even, or if p is odd and ¢ = 1 mod 4, then (G,9), is the connected
centralizer of a semisimple element unless all components 4, _; have X,
even. (We observe that the condition that A; should be even includes the
fact that A has no part equal to 1. This is equivalent to the condition that
A+A3+...+p+v =1and is a non-trivial assertion about @,.)

We have therefore justified the entry in Table 2 for simply-connected
groups of type B,.

Groups of type B, in characteristic 2

We conclude this section with a discussion of the case when @ is a group
of type B, over an algebraically closed field K of characteristic 2. (Then
@ is abstractly isomorphic to a group of type C; over K). Let G, be a
reductive subgroup of @. By Proposition 12 the root system ®, of G, has
form

@O, =Ufe;—ei#5,je LIU{tetei#],6,j€}
o [+ 4
U{tete, te:i#j,65e K},
where I, L, ..., J},J,, ..., K}, K,, ..., are disjoint subsets of {1, 2, ...,7} whose
union is {1,2,...,0}. Let |L,| = A,, |Jy| = pa | Ky| = v, and let
A=ApAy o), p=(pyppe ), v= (v ..)

Then A, u,v are partitions such that |A|+|p|+]|v|=1. @, is a subsystem
of type

Ay x4, 1%x..x D, xD,x...xB, xB, x....

Since K has characteristic 2 we may assume G is adjoint. Then we have

Pr=¢6€—€, Py=¢€—e€3 ..., P1=€_1¢ D =¢
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Also we have X ={3}_ a.;: a, € Z}. X/P, is generated by elements ¢,
one for each I,, and by elements ¢; satisfying 2¢; = 0, one for each J,.
Hence X/P,2Z®02®..®Zy,®Z,® ..., with one component Z for each
part of A and one component Z, for each part of . The torsion subgroup
P,/P, of X/P, is isomorphic to Z,®Z,® ... with one component for each
part of . It is therefore an elementary abelian 2-group and its only
character of order prime to 2 is the unit character. This fails to be regular
unless @, = ®,. This justifies the entries in Tables 1 and 2 for groups of
type B, in characteristic 2.

7. Groups of type D,

Suppose G is a group of type D, over an algebraically closed field K.
Let ® = {+e;+¢;:4,5€{1,2,...,l}} be the root system of @, and let G, be
a reductive subgroup with root system @, given by

O, =Ufe;—e:0#5, 6,jeLyU{tete:i#4,4,)€d4}

where I, L, ...,J,J;, ... are disjoint subsets of {1,2,...,7} whose union is
{1,2,..,0}. Let |I|=2A, |Jol = pos and A= (A, Ay, ...), 1= (B, pg,.-.)-
Then |A|+]|p| = 1. @, is a root system of type

Ay x4y 1x...x D, x D, x....

The roots in ®, —®, have form +e;+ e; where 4,j are in distinct com-
ponents J,, J;. Their images in P, /P, have form é;—¢;. Let i be a character
of P/P,. Then y(e;—e;) = + 1. If there are at least three components of
type D, giving rise to ¢é;,¢,¢, in X/B, we have (é—¢)= t1,
P(é;—€,) = +1,¢(é;—¢,) = +1. So ¢ annihilates some element of ®, — P,.

If there is at most one component of type D we have ®, = @,. If there
are exactly two components of type D then ®,—®, consists of a single
element ¢,—¢; in P,/P,. This element has order 2. There is a character ¢
of order 2 which does not annihilateit. Thus if p is odd @, is a connected
centralizer, but if p = 2 it is not. This justifies the entry in Table 1 for
groups of type D

Turning to the finite group (G,?),, we see that if Gy has at most one
component of type D then G, is a Levi subgroup of some parabolic sub-
group of @ and so by [5, Theorem 21], (G,?), is the connected centralizer
in G, of some semisimple element when ¢ is sufficiently large. If there are
at least three components of type D, or if K has characteristic 2 and there
are at least two components of type D, Table 1 shows that (G,?), cannot
be the connected centralizer in G, of a semisimple element. We shall
therefore assume subsequently that K has characteristic p # 2 and that
®, has exactly two components of type D. .
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We must now distinguish between the different isogeny types for G.
The fundamental roots p,,p,, ...,», and fundamental weights ¢,,¢,, ...,
may be taken as

Pr=¢€—€, Py=€—€, .., P1=€,-€¢ P =¢_+€,
fhh=6€, fa=¢te€, .., Qas=e&tet...+6y,
Gia=Hateat...+ag —¢), g=ietet. ..+ +e)
The different isogeny types to be considered are the following.

(1) X ={Z\ 1a:;:a;€Z}. In this case G is the special orthogonal
group SOy(K).

() X ={Z ,0:;:a;€Z,3}_ a; even}. In this case G is the adjoint
group of type D, viz. G = PSOy(K).

(iii) X is the group generated by e,,e,,...,,¢. Here G is the simply-
connected group of type D,, viz. the group Spin,(K).

(iv) If I is even there is a fourth possibility. Here X is the group
generated by X!, a.e;, where a; € Z with 3_, a, even, and by ¢;. Here G
is the half-spin group.

Let @ be the group generated by ¢,,4,,...,9;, and let P be the group

generated by 2,,P,,...,2. Then P<@,|Q/P|=4, and the subgroups
between P and @ are as follows:

09 0@

¢P, q,1>o<o>o P, o(P, &)

O P OP
l even l odd

In the case when [ is even the two groups (P,q,_,> and (P, ¢, are inter-
changed by the graph automorphism of . Thus only one of the cases
X ={(P,q_> and X = (P, ¢ needs to be considered.

We make some general comments on the c-action before looking in
detail at the individual isogeny types. We have o = go,, where ¢, is an
isometry which has order 1 or 2. o, acts on the components of G,. At
most two of these are assumed to have type D. Suppose o, has order 2.
Then, at most one of these components has trivial oy-action and at most
one has non-trivial o -action.

(i) Suppose first that @, has exactly one component of type D. The
action of 7 € Auty;(A,) on this can be either trivial or non-trivial. The
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action of o, can also be either trivial or non-trivial. Combining these
possibilities we see that there are four cases which can arise.

(ii) Suppose G, has two components of type D not interchanged by .
0, acts on both of these and its action is trivial on one, say D,,, and non-
trivial on the other D,. The r-action can be trivial or non-trivial on
D, and D,. Thus there are again four cases which can arise.

(iii) Suppose G, has two components of type D which are interchanged
by 7. o, acts trivially on one of these and non-trivially on the other. -2
can be either trivial or non-trivial, giving rise to two possible cases.

Consider the components of (M?), to which these various cases give
rise. We obtain one component for each orbit of o;r on the components of
type D. For each oyr-orbit of length 1 we obtain D(g) if oyr =1 and
2Dy(q?) if oyt # 1. For each oyr-orbit of length 2 we obtain Dj(g?) if
(097)2 = 1 and 2D(¢?) if (o,7)? 5 1.

We summarize the possible components of type D which can arise when
o, has order 2 in the diagrams on p. 32.

The case where G = SOy(K)

Suppose X = {3!_;a.e;: a; € Z}. Then X/P, is generated by elements
é,, one for each I,, and by ¢;, ¢; satisfying 2¢; = 2¢, = 0 corresponding to
the two components of type D. Hence

X/P~2020.. 00,05,

with one component Z for each part of . Thus the torsion subgroup
P, /P, is isomorphic to Z,® Z,.

Let w € A5 (W,) and let w map to 7 € Auty(4A,). By Proposition 10 we
have

Autp(B) = 8y % (Zy 1 8,,) X (Z3 1 8,) X oo X (231 8,,) X (Zy 0 8,,) % ..,y

if m, # 0, where m;, n, are the number of parts of A, u respectively equal
to ¢, and Auty(A,) is a subgroup of index 2 in the above if m, = 0. If
m, = 0 the induced symmetries are those for which the total number of
negative cycles on components 4,,_,, where A, is even, and components of
type D is even. Now ¢ = go, where the order of o, is 1 or 2. When o, = 1,
G, is the split group SOy(q), and when o, has order 2, G, is the quasi-split
group SOz(g). Suppose o, gives rise to a pair of partitions £, 7 with
[€9]+]|n| = m,, where the parts of the partitions give the lengths of the
positive and negative cycles on the components of type 4,_,.

In order to pass from X/P, to ' we impose additional relations
(qoow—1)x = 0 for all z € X. T is generated by elements ¢;, one for each
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O .
o P ro N— gp=1,7=1, 05t = 1; Dfq).

A

O-mmm— = O'—O\ 100 T = 1, OgT # 1; 2Dl(q2)'
O

. o___o<° ] =1, om#1;De).
(o]

S —————- O_O<OI (o I T o7 =13 Dl(q)'

o)
O ——==- —o——o/O O-—-==-- o——o/o I To
g =1 \O (o]

72 =1, (07)% # 1; 2Di(g*).

2 # 1, (0g7)? = 1; Di(g?).
oow-orbit of type 4, subject to relations
(¢¥—1)é; = 0 for positive k-cycles,
(¢¥+1)¢; = 0 for negative k-cycles,
and by €;’s corresponding to the osw-orbits of type D. Since there are just
two components of type D there are either two o w-orbits of type D of
length 1 or one oyw-orbit of type D of length 2. If both components of

type D are fixed by o,w, I' has two additional generators é;, é;, satisfying
2¢; = 2¢;, = 0. The image in I" of ®; —®, consists of the single element
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&;,+¢;,. This element is non-zero in I and there is a character of I' of order
2 which does not annihilate it. If, on the other hand, the two components
of type D are interchanged by o,w there is a single generator é; of I’
coming from an orbit of type D satisfying 2¢; = 0. The elements of
®, — @, then have image 0 in I". This justifies the entry in Table 2 for the
group SO,

The simple components of (G,¢), in this case are of type 4;_,(¢¢"),
24, ,(¢*"), D,(g) or D, (¢?), and D,(q) or 2D, (¢?). Moreover, the total
number of twisted components of type 2D and type 24;_, with even ¢ is
even if oy = 1 and odd if o4 # 1.

The adjoint case
Now suppose @ is an adjoint group of type D,. Then

1 1
X = {Zaiq: a,€Z, Ja, even,.
i=1 i=1

X/P, is the set of elements ¥ a,¢;+a;¢é; +a,¢; with one ¢ for each com-
ponent of type 4 in @, subject to the conditions X a;+a; +ay, is even
and a,,a;, € {0,1}. The torsion subgroup P,/P, of X/P, is the subgroup
of order 2 generated by é; +¢;,.

We consider the additional relations needed to pass from X/P, to its
quotient group I'. These relations have the form (go,w—1)z = 0 for all
xz € X. We have, for each ¢, w(é;) = ¢,€; for some i, where ¢; = + 1. Asin
the adjoint case in type C; we choose a new system of generators for X/P,
as follows. X /P, is generated by é;+¢¢€,, é;—¢;6; for all é; correspond-
ing to components of type A, by ¢; +¢;, and by é;,—é; where ¢,,¢é; are in
distinet w-orbits of any type. Thus I' is generated by elements ¢; + ¢,6;,
é’t - e.té.t', éjl + éh’ éi - éf Subject tO rel&tions

(qaow— 1) (é'i + s'ié‘i’) = O,

(qoow—1) (¢;—&6;) = 0,

(goow—1) (&,— &) = 0,

2(é;,+¢;,) =0,

(€s— &)+ (é5— &) = (é;— &),

2(3-1' - éj) = (é{ + Eie.i/) + (e—t b e.iéir) - (éj + eléf') - (éj - ejéj:).
Consider the image of ®;—®, in I'. This consists of a single element
€;,+¢é;. ¢;,¢, may or may not be in the same oqw-orbit. Suppose that
€., €;, are not in the same oyw-orbit. Then suppose we impose on I' the
additional relations é;+¢;6; =0, é;—¢,6, = 0 for each orbit of type 4.

We then obtain a quotient group of I' generated by é; +¢;, é—¢; (one
5388.3.42 C
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term for each pair of distinet oqw-orbits) subject to relations
2(¢,+8;,) =0, (&—¢)+(6—6)=(&—6&), 2(6-¢)=0.

These relations do not imply é; +¢é;,, = 0. Thus é; +¢;, # 0in I'.

We therefore assume that ¢;,¢; are in the same w-orbit. We simplify
the given system of generators and relations by considering the orbits of
o,w on the components of @, of type 4. These orbits correspond to parts
£@,, 7, of the partitions £%, 9%, where £%); is a positive cycle on com-
ponents of type 4,_; and ', is a negative cycle on components of type
4;_,. In addition there is one o w-orbit on the two components of type D.
We put ¢; = é;—qe,é;,d; = 2¢,€,, one pair ¢;, d; for each w-orbit of type 4.
Then, just as in the case of an adjoint group of type C; (Lemma 13), we
obtain the following result.

Lemma 15. Suppose @, has exactly two components of type D. Then T’
s isomorphic to the abelian group with generators c;,d; (one pair for each
oqw-orbit of type A) and é,—é; (one term for each pair of distinct aqw-orbits)
subject to the following relations:

(i) when k = €9,
{0 if k is even,

c; if ks odd;
(ii) when k = n'9y,
0 of kis even,

k4 1)d, =
He'+ 1y {c,- if k is odd;

(iii) ¢; = ¢; for all pairs of w-orbits;
(iv) 2¢; = 0 for all orbits;

(V) (Es—€))+(&5— &) = (&,— &),
(vi) 2(6— &) = e — eyd;

Lemma 15 asserts in particular that c; = ¢, for all pairs of w-orbits. We
write ¢ = ¢; for all ¢. Since ¢;,¢é;, are in the same w-orbit the element
é;,+¢&;, is equal to ¢ in I". Thus we wish to decide whether the relations of
Lemma 15 imply that ¢ = 0. By applying Lemma 14 and considering
the two generator subgroups {c;,d;> we deduce that ¢ = 0 in I'. This
justifies the entry in Table 2 for adjoint groups of type D;.

We note that if p # 2 and there are two components D, , D, of type D
then the simple components of (Gy9), of type A are of form A4, ,(g5"¥),
24, 1(¢*""), and the simple components of type D have form D, (q) or
®D,(¢%), D,(q) or 2D, (¢*) if oyw does not interchange the two components

D,, D,,, and have form D,(¢?) or 2D,(¢q*) if oqw does interchange D, , D,..
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The simply-connected case
Now suppose G is a simply-connected group of type D, i.e. G = Sping(K).
Then X is the group generated by ey, e,, ..., ¢, q;, where

g = 3(e;+ex+...+¢).
X /P, is generated by elements ¢;, one for each component of type 4 in

®,, by é;,¢;, corresponding to the two components of type D, and by g;.

In order to pass from X/P, to I' we impose the additional relations
(qgogw—1)x = 0 for all x € X.

Suppose first that ogw interchanges the two components of type D.
Then the relation (gosw— 1)é; = 0 implies that ¢;, +é;, = 0in I'. However,
the image of ®; —®, in I' consists of the single element é; +¢é;. Thus I'
has no regular character in this case and so we cannot have the connected
centralizer of a semisimple element.

Thus we assume that o,w fixes both components D,, D, of type D.
Then T is generated by elements é; corresponding to components of type
4, by é;,¢é;, and by g, subject to relations

(goow—1)é; = 0,

2¢;, = 2¢;, = 0,

(goqw—1)g, = 0,

24 = (Zhos €0)-
The image of ®, —®, in T consists of the single element ¢, +¢; and the
only relation which could possibly imply é;+¢; = 0 is the relation

(goqw—1)q; = 0. We therefore consider this relation in detail.
Since 2¢q; = e;+¢€;+... +¢, we have

24, = {16, + Ls€;,+ a linear combination of é;’s,

where {, = 0if y, is even and {; = 1 if y, is odd, and , is defined similarly
for p,. Also we have

§—ow(q) = 11€;, + 96, + & linear combination of é;s,

where 7, = 0 if ggw does not twist D, and 7, =1 if o,w does twist D,,

and 7, is defined similarly for D,.. Hence the relation (goqw—1)§ = 0 has
the form }(g—1) (23) = ¢(d— oqw(d)), Which gives

3(q— 1) (L1€5,+ Lo8;) = q(m1€j,+96;,) + a linear combination of é;’s.
Thus we have
(3(g— 1)s —m)é;, + (3(g — 1)l —73)é;, = a linear combination of é;’s.
We consider when this equation has the form

é;,+¢;, = a linear combination of é;’s.
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If ¢ = 1 mod 4 this is so if and only if 5, = 1,79, = 1, i.e. oyw twists both
D,,D,. If g=-1mod4 this is so if and only if { # », mod2 and
{, # m; mod 2. This means the components have the form D, (q), where
py is odd, or 2D, (q), where p, is even. If these conditions are not satisfied
we cannot deduce é; +¢;, = 0 in I" and so I has a regular character.

Thus we suppose henceforward that either ¢ = 1 mod 4 and the D-com-
ponents have the form 2D, (¢%), 2D, (¢?) or that ¢ = —1 mod4 and the
D-components are D, (q), for p; odd, or 2D, (¢?), for p; even. Then the
contributions to (gogw — 1)q, from the components of type 4 are calculated
just as in the simply-connected groups of type B;. The relation

(goow—1)g; =0
€+ &, = TIN(0* - 1)¢;— T3 (N/5) (¢ +1)e;,

where the first sum extends over all the positive k-cycles of oyw on X/P,
and the second over all negative k-cycles on X/P, induced by negative
r-cycles on X. (Here s =7/k.) Now ¢; has order ¢k—1 for a positive
k-cycle, and order ¢* + 1 for a negative k-cycle. Thus we obtain é; +¢; = 0
if and only if A, is even for each positive cycle on X /P, and A,/s is even for
each negative cycle on X/P, induced by a negative cycle on X. This is
equivalent to the assertion that A, is even for all cycles of oqw on X/F,.
This completes the discussion in the simply-connected case and we have
justified the entry in Table 2 in this case.

We note that the simple components of (G,9), in this case are of type
A;_1(g5™), 24,.4(¢*""™), D, (q) or 2D,,(¢*), and D, (q) or 2D,,(¢*). Also the
total number of twisted components of type 2D and of type 24,_;, with
even %, is even if o, = 1 and odd if o, # 1.

becomes

The half-spin group

There is one further type of group D, to be considered when [ is even.
This is the half-spin group. In this group one must have oy = 1. The
situation here is more complicated than in the other isogenous groups of
type D;, and we shall state the results without proof.

PROPOSITION 16. Let G be the half-spin group of type D, over an alge-
braically closed field of characteristic p # 2, and let G, be a reductive sub-
group of maximal rank in G of type Ay _x Ay 1%...x D, xD,. Let
w € N (W), and suppose w fixes the two components D,, D,.. Let G,? be a
o-stable subgroup of G obtained by twisting Gy by w, that is, n(g°g~1) = w.
Then (G49), is the connected centralizer in @, of a semisimple element for q
sufficiently large unless all A; are even and the D-components have the form
2D, (g%, ®D,,(¢?) if ¢ =1mod4, and have the form D,(q), for u; odd, or
®D,(¢?), for p; even, if ¢ = —1 mod 4.
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ProrosITION 17. Let G be as in Proposition 16, and let G, be a reductive
subgroup of maximal rank in G of type Ay _yx Ay yx...x D,x D,. Let
w € Mp(W,) interchange and twist the two components of type D, thus giving
rise to a component 2D (¢*) in (G9),. Let G, be a o-stable subgroup of @
obtained by twisting G, by w. Then (G,9), is the-connected centralizer in G, of a
semisimple element for q sufficiently large.

ProrositionN 18. Let @ be as in Proposition 16, and let G, be a reductive
subgroup of maximal rank in G of type Ay _yx Ay,_yx...x D,x D,. Let
w € N (W) interchange the components D, without twisting them, thus
giving rise to a component D,(q?) in (Gy9),. Let G\ be a o-stable subgroup of
G obtained by twisting @, by w. Then (G9), is the connected centralizer in G,
of a semisimple element for q sufficiently large unless all A, are even. If all A,
are even (G,7), is a connected centralizer for q sufficiently large if and only if

Hg—-1Npu+M+v=0 mod2,
where M,v are defined as follows. M is the number of simple components of
form A, _,(q°) or 24,,_,(q%), where A, = 2 mod 4 and e is odd. v is O if w
induces the positive graph automorphism on D,+ D,, and v 1s 1 if w induces
the megative graph automorphism. The positive and negative graph auto-
morphisms are defined as follows. Suppose the two components D,, D,, of
D, have fundamental roots as shown.

ei,,_l ez#
€, — €4 °_ 1
0 QO = = == ———O/“
1 2 3 o
m
e‘i“_x + ei,_,
eizu—l eiﬂy
%
o To S, SR — o -l
p+l p+2 ~
2p
e +e

We are assuming that w interchanges these two components but does not twist
them. There are two possible graph automorphisms of the Dynkin diagram
which could be induced by w. If the nodes are numbered as above these auto-
morphisms are T, 7, defined by

7= (Lp+1) (2 p+2).. (k= 1, 20— 1) (s, 20),

s = (Lp+1)(2,p+2)...(n—1,2p) (p, 2n—1).
71, Ty are called the positive and negative graph automorphisms respectively.
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Nore. It may appear odd that the criterion for being a connected
centralizer should depend upon whether w induces the positive or negative
graph automorphism on D,+ D,. However, these two graph auto-
morphisms do not play a symmetric rdle for a half-spin group @ with given
character group X. We observed earlier that there are two possible
lattices X between the root lattice and the weight lattice which are
character groups for half-spin groups. If the other possible lattice X were
chosen instead as the character group the rdles of the positive and negative
graph automorphisms of D,+ D, would be interchanged in the criterion
for being a connected centralizer.

The results for the half-spin group are summarized in Table 2 of §4.

8. The character degrees

Finally, we shall apply the results obtained for the centralizers of
semisimple elements in G, when G is simply-connected to give the degrees
of the irreducible semisimple representations in the dual group @, which
is adjoint. In order to give these degrees the following notation will be
useful, and we assume ¢ is odd:

o(q) = | 4)lg(g—1);
2o(q?) = |24y(¢?) (g +1);
Bia) = 1Bi(a) Iy
7(2) = 1Gl9)l¢s
&(a) = 1 Dq) s
281(q%) = |2Dy(¢?) 'q"

Here | A;(q)|, denotes the part of | 4;(¢)| prime to g, etc. Moreover, we
define, for small values of [,

afg) =¢-1,
Zag(g?) = g +1,

() = (¢*-1)(g-1),
u(g?) = (¢*—1)(g+1),

8a(9) = (¢*—1)%
%8,(¢%) = ¢* - 1.

The group (4y)yq(9) = PGLya(q)
The dual group is (4;)s,(q) = SL;,1(¢). There is one genus of semisimple

classes in (4,),(¢) for each partition A = (1m2m237s,..) of I+1 and each
partition p® = (u®, p®,...) of n; for ¢ =1,2,.... The degree of the
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corresponding family of irreducible representations of (4;),4(q) is

oy(q)/ };I oy (g*).

The group (*4))5a(9*) = PU,,(q)

The dual group is (24,).(¢%) = SU,,,(q). There is one genus of semi-
simple classes in (24,),.(¢?) for each partition A = (17127237s,..) of [+ 1 and
each partition p® = (u®, u®,...) of n, for s = 1,2,.... The degree of the
corresponding family of irreducible representations of (24,),4(¢®) is

%)/ TI eua(@™) TI ey_y(g®).
#even p“);’odd
The group (B)sa(9) = SOy,4(9)

The dual group is (C))s(q) = Spu(g). We take a pair of partitions
A= (Im2me3ms ) p = (1m2m3n, ), with |A|+|p| =1, and assume that p
has at most two parts. We then take sets of partitions

g = (g0 g0, ), ) = (nD) nW),, ),
with | %) | +|n%| = m,, and partitions
[ = (LB, 19,...),
with | {®| = n;. There is one genus of semisimple classes in (C}),,(q) for each
such set of partitions A, u, £, 79, {9 except that if u = (¢4) then [ 5 (2).
The degree of the corresponding family of irreducible representations of
(B)aala) is

710@)/TT 01 (q5“) TT P4 (%) Il 74(gt™).

The group (Gaa(9) = PG Spa(q)

The dual group is (By)(q) = Sping,,(q). We take a pair of partitions
A= (1m2magms )y = (273%,..), and a number v with |[A]+|p|+v =],
and assume that p has at most one part. We then take sets of partitions

£ = (£0 g, ) ) = (@) ), ),
with [ £9]+]n] = m,, and

L = (L9, 19,..), w = (0 w,...),
with [{¥|+|w®| =mn, (Of course n; =0 or 1 so {*),w"® have an ex-
tremely simple form.) There is one genus of semisimple classes in (B;)(q)
for each such set of partitions A, u, £, 7, (), ¥ except that we must
exclude those giving rise to a critical subgroup as defined in §4, Table 2.

The degree of the corresponding family of irreducible representations of
(C’l)nd@) is

B0)/ T -o(a5 TT g y(g50°%) 18,065 TT %44,
.4 (%) ] ij



40 R. W. CARTER

The group (Dy)aa(g) = POx(q)

The dual group is (D;),(q) = Sping(g). We take a pair of partitions
A= (Im2megms )y = (27 37s...), with |A|+|p| =1, and assume that p
has at most two parts. We then take sets of partitions

£0) = (¢ ), ) pld) = (gl i), )
with | €9 | +|9®| = m,, and

L = ({0, 19,.), o = (0¥ wt,...),
with | {|+]|w| = n;. There is a family of semisimple classes in (D;),,(q)
for each such set of partitions A, u, £, 7%, () % except that if u has
two parts then we must exclude those giving rise to critical subgroups as
described in §4, Table 2, and if u = (¢¢) then we cannot have (¥ = (2) or
w® = (2). We note also in this case that a family may contain more than
one genus of semisimple classes. The degree of the corresponding family of
irreducible representations of (D)), 4(g) is

8i(@)/ TT ctg—1(g5) T Pors1(¢?™) TT 85(q*"™) IT 28:(g%™).
(X %) 1, %

The group (*D;),a(@®) = PO3(g)

The dual group is (2D,),(q) = Sping(q). We take sets of partitions
A p, ED @ 10,0 a5 for (D)), q(g). There is a family of semisimple classes
in (2D;).(q%) for each such set of partitions, except that if u has two parts
then we must exclude those giving rise to critical subgroups as described in
§4, Table 2, and if u = (¢7) then we cannot have {) = (2) or ¥’ = 2. The
degree of the corresponding family of irreducible representations of
(*Di)aa(g®) is

281(92)/ TT ots—1(g5"™) TT 2ets5(g®") TT 8,(¢%“) 1 28,(g"™).
iJ i X} i

Finally, if K has characteristic 2 the degrees of the irreducible semi-
simple characters of the adjoint group G when ¢ is sufficiently large are

given by
I @a Iq’/l 'Zcr 'q’s

where L is a o-stable reductive part of some parabolic subgroup of the dual
group G.

Analogous results for the exceptional groups have been obtained by
Deriziotis [10].
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