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Abstract This article is devoted to a family of logarithmic integrals recently treated
in mathematical literature, as well as to some closely related results. First, it is shown
that the problem is much older than usually reported. In particular, the so-called
Vardi’s integral, which is a particular case of the considered family of integrals, was
first evaluated by Carl Malmsten and colleagues in 1842. Then, it is shown that un-
der some conditions, the contour integration method may be successfully used for
the evaluation of these integrals (they are called Malmsten’s integrals). Unlike most
modern methods, the proposed one does not require “heavy” special functions and is
based solely on the Euler’s Γ -function. A straightforward extension to an arctangent
family of integrals is treated as well. Some integrals containing polygamma functions
are also evaluated by a slight modification of the proposed method. Malmsten’s inte-
grals usually depend on several parameters including discrete ones. It is shown that
Malmsten’s integrals of a discrete real parameter may be represented by a kind of
finite Fourier series whose coefficients are given in terms of the Γ -function and its
logarithmic derivatives. By studying such orthogonal expansions, several interesting
theorems concerning the values of the Γ -function at rational arguments are proven.
In contrast, Malmsten’s integrals of a continuous complex parameter are found to be
connected with the generalized Stieltjes constants. This connection reveals to be use-
ful for the determination of the first generalized Stieltjes constant at seven rational
arguments in the range (0,1) by means of elementary functions, the Euler’s con-
stant γ , the first Stieltjes constant γ1 and the Γ -function. However, it is not known
if any first generalized Stieltjes constant at rational argument may be expressed in
the same way. Useful in this regard, the multiplication theorem, the recurrence rela-
tionship and the reflection formula for the Stieltjes constants are provided as well.
A part of the manuscript is devoted to certain logarithmic and trigonometric series
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related to Malmsten’s integrals. It is shown that comparatively simple logarithmico–
trigonometric series may be evaluated either via the Γ -function and its logarithmic
derivatives, or via the derivatives of the Hurwitz ζ -function, or via the antiderivative
of the first generalized Stieltjes constant. In passing, it is found that the authorship of
the Fourier series expansion for the logarithm of the Γ -function is attributed to Ernst
Kummer erroneously: Malmsten and colleagues derived this expansion already in
1842, while Kummer obtained it only in 1847. Interestingly, a similar Fourier series
with the cosine instead of the sine leads to the second-order derivatives of the Hur-
witz ζ -function and to the antiderivatives of the first generalized Stieltjes constant.
Finally, several errors and misprints related to logarithmic and arctangent integrals
were found in the famous Gradshteyn & Ryzhik’s table of integrals as well as in the
Prudnikov et al. tables.
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1 Introduction

1.1 Introductory remarks and history of the problem

In an article which appeared in the American Mathematical Monthly at the end of
1980s, Vardi [67] treats several interesting logarithmic integrals found in Gradshteyn
and Ryzhik’s tables [28]. His exposition begins with the integrals
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which can be deduced one from another by a simple change of variable (these formu-
las are given in no. 4.229-7, 4.325-4 and 4.371-1 of [28]). Although the first results
for such a kind of integrals may be found in the mathematical literature of the 19th
century (e.g., in famous tables [62]), they continue to attract the attention of modern
researchers and their evaluation still remains interesting and challenging. Vardi’s pa-
per [67] generated a new wave of interest to such logarithmic integrals and numerous
works on the subject, including very recent ones, appeared since [67], [2], [13], [7],
[47], [46], [68], [4], [8], [44]. On the other hand, since the subject is very old, it is
hard to avoid rediscoveries. For the computation of the above mentioned integral (1),
modern authors [2], [13, p. 237], [7, p. 160], [46], [4], [44], send the reader to the
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Fig. 1 A fragment of p. 12 from the Malmsten et al.’s dissertation [40]

Vardi’s paper [67].1 Vardi, failing to identify the author of formula (1) and failing
to locate its proof, proposed a method of proof based essentially on the use of the
Dirichlet L-function. However, formula (1), in all four forms, was already known to
David Bierens de Haan [62, Table 308-28, 148-1, 260-1], and if we go to a deeper
exploration of this question, we find that integral (1) was first evaluated by Carl Jo-
han Malmsten2 and colleagues in 1842 in a dissertation written in Latin [40, p. 12],
see Fig. 1. A part of this dissertation was later republished in the famous Journal für
die reine und angewandte Mathematik6 [41], see, e.g., p. 7 for integral (1). Moreover,
two other logarithmic integrals,
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mentioned in [2, 67], [13, p. 238], [4, 70], were also first evaluated by Malmsten
et al. [40, pp. 12 and 43] and [41, formulas (12) and (72)].3 Malmsten and his col-
leagues evaluated many other beautiful logarithmic integrals4 and series as well, but

1Only Bassett [8], an undergraduate student, remarked that solutions for integrals (1) and (2a, 2b) are much
older than Vardi’s paper [67].
2Carl Johan Malmsten, written also Karl Johan Malmsten (born April 9, 1814 in Uddetorp, died Febru-
ary 11, 1886 in Uppsala), was a Swedish mathematician and politician. He became Docent in 1840, and
then, Professor of mathematics at the Uppsala University in 1842. He was elected a member of the Royal
Swedish Academy of Sciences (Kungliga Vetenskaps–akademien) in 1844. He was also a minister without
portfolio in 1859–1866 and Governor of Skaraborg County in 1866–1879. For further information, see
[36, vol. 17, pp. 657–658].
3Both results are presented here in the original form, as they appear in the given sources. In fact, both
formulas may be further simplified and written in terms of Γ (1/3) only, see (45) and (44), respectively
(see also exercise no. 32 where both integrals appear in a more general form). Surprisingly, the latter fact
escaped the attention of Malmsten, of his colleagues and of many other researchers. Moreover, Vardi [67,
p. 313] even wrote that “in (2a) the number 3 plays the ‘key role’ and in (2b) 6 is the ‘magic number”’.
A more detailed criticism of the latter statement is given in exercise no. 30.
4Many of which were independently evaluated in [2] and in [44].
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unfortunately, none of the above-mentioned contemporary authors mentioned them.
Moreover, the latter even named integral (1) after Vardi (they call it Vardi’s integral),
and so did many well-known internet resources such as Wolfram MathWorld site [70]
or OEIS Foundation site [57].

On the other hand, it is understandable that, sometimes, it can be quite difficult
to find the original source of a formula, especially because of the oldness of the
result, because the chain of references may be too long and confusing, and because it
could be published in many different languages. For example, Gradshteyn and Ryzhik
wrote originally in Russian (their book [28] is a translation from Russian), Bierens de
Haan published usually in Dutch or in French, Malmsten wrote in Swedish, French
and Latin, and we now use mostly English. As the reference for (1), Gradshteyn and
Ryzhik [28] as well as Vardi [67], cite the famous Bierens de Haan’s tables [62]. In
the latter, on the p. 207, Table 148, the reference for the integral (1) is given as “(IV,
265)”.5 This means that this result comes from the 4th volume of the Memoirs of the
Royal Academy of Sciences of Amsterdam, which is entirely composed of the Tables
d’intégrales définies by Bierens de Haan [61], and which is an old version of the well-
known Nouvelles tables d’intégrales définies [62]. The old version [61] is essentially
the same as the new one [62], except that it provides original sources (the new version
[62] contains much less misprints and errors, but original references given in the
old edition were removed). Thus, we may find in the old edition [61, pp. 264–265,
Table 191-1] that integral (1) was evaluated by Malmsten in the work referenced as
“Cr. 38. 1.” This is often the most difficult part of the work, to understand what an old
abbreviation may stand for. Bierens de Haan does not explain it, and unfortunately,
neither do modern dictionaries nor encyclopedia. After several hours of search, we
finally found that “Cr.” stands for “Crelle’s Journal”, which is a jargon name for
the Journal für die reine und angewandte Mathematik.6 The number 38 stands for
the volume’s number, and 1 is not the issue’s number but the number of the page
from which the manuscript starts. Furthermore, a deeper study of Malmsten’s works,
see e.g. [63, p. 31], shows that this article is a concise and updated version of the
collective dissertation [40] which was presented at the Uppsala University in April–
June 1842.7 Therefore, taking into account the undoubted Malmsten and colleagues’
priority in the evaluation of the logarithmic integrals of the type (1) and (2a), (2b),
we think that integral (1) should be called Malmsten’s integral rather than Vardi’s
integral. Throughout the manuscript, integrals of kind (1) and (2a), (2b) are called
Malmsten’s integrals.

The aim of the present work is multifold; accordingly, the article is divided in three
parts. In the first part (Sect. 2), we present Malmsten’s original proof that Vardi and
other modern researchers missed. The presentation of this proof may be of interest

5Another frequently encountered notation for references in Bierens de Haan’s tables [61] and [62]—which
may be not easy to understand for English-speaking readers—is “V. T.” which stands for voir tableau,
i.e. “see table” in English.
6English translation: “Journal for Pure and Applied Mathematics”.
7However, we were surprised to see that Malmsten in the article [41] did not even mention the afore-
mentioned dissertation [40]. In fact, integrals (1) and (2a), (2b) were very probably derived by one of his
students or colleagues, but now it is almost impossible to know who exactly did it.
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for a large audience of readers for multiple reasons. First, it may be quite difficult
to find references [40] and [41], as well as cited works. Second, the manuscript was
written in Latin, and references are in French. Latin, being discarded from the study
program of most mathematical faculties, may be difficult to understand for many
researchers. Third, Malmsten does not make use of special functions other than Γ -
function; instead, he smartly employs elementary transformations, so that his proof
may be understood even by a first-year student. Fourth, the work [41] contains numer-
ous misprints in formulas and a proper presentation might be quite useful as well. At
the end of the presentation, we briefly discuss further Malmsten et al.’s contributions,
such as, for example, the Fourier series expansion for the logarithm of the Γ -function
(obtained 5 years before Kummer) or the derivation of the reflection formula for two
series closely related to ζ -functions (obtained 17 years before the famous Riemann’s
functional relationship for the ζ -function). Also, connections between the logarithm
of the Γ -function and the digamma function, written by Malmsten as a kind of dis-
crete cosine transform, are interesting and provide some further ideas that we later
re-used in Sect. 4.5. At the end of this part, we remark that several widely known
tables of integrals, such as Gradshteyn and Ryzhik’s tables [28], Bierens de Haan’s
tables [61, 62], and probably, Prudnikov et al.’s tables [53], borrowed a large amount
of Malmsten’s results, but in most of them, original references to Malmsten were lost.
Moreover, some of these results appear with misprints.

In the second part of the manuscript (Sect. 3), we introduce a family of logarith-
mic integrals of which integral (1) and many other Malmsten’s integrals are simple
particular cases. We propose an alternative method for the analytical evaluation of
such a kind of integral. Unlike most modern methods, the proposed one does not
require “heavy” special functions and is based on the methods of contour integra-
tion. A non-exhaustive condition under which considered family of integrals may be
always expressed in terms of the Γ -function is provided. A straightforward exten-
sion to an arctangent family of integrals is treated as well. At the end of this part,
we consider in detail examples of application of the proposed method to four most
frequently encountered Malmsten’s integrals.

The third part of this work (Sect. 4) is designed as a collection of original exercises
containing new formulas and theorems, which can be derived directly or indirectly by
the proposed method. The exercises and theorems have been grouped thematically:

• Logarithmic Malmsten’s integrals containing hyperbolic functions and some
closely related results are treated in Sect. 4.1. In particular, integrals, which can be
evaluated by the direct application of the proposed method, are given in Sect. 4.1.1.
These may be roughly divided in two parts: relatively simple Malmsten’s integrals
containing two or three parameters (e.g. exercises no. 1, 2, 4, 5, 6-a, 7, 8, 17,
etc.) and complete Malmsten’s integrals depending on three or more parameters,
including discrete ones (e.g. exercises no. 3, 6-b,c,d, 9, 13, 11, 14). Simple Malm-
sten’s integrals, some of which are evaluated up to order 20,18 often lead to various
special constants such as Euler’s constant γ , Γ (1/3), Γ (1/4), Γ (1/π), Catalan’s
constant G, Apéry’s constant ζ(3) and others. As regards complete Malmsten’s
integrals, whose evaluation is carried out up to order 4, it is found that such inte-
grals, when depending on a discrete real parameter, may be represented by a kind
of finite Fourier series whose coefficients are given in terms of the Γ -function and
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its logarithmic derivatives. In contrast, when the considered discrete real parameter
becomes continuous and complex, such integrals may be expressed by means of
the first generalized Stieltjes constants (such exercises are placed in Sect. 4.5).

• The results closely related to logarithmic Malmsten’s integral are placed in
Sect. 4.1.2. These include the evaluation of integrals similar to Malmsten’s ones
and that of certain closely connected series. Most of these series are logarithmico–
trigonometric and may be evaluated either via the Γ -function and its logarithmic
derivatives, or via the derivatives of the Hurwitz ζ -function, or via the antideriva-
tive of the first generalized Stieltjes constant (conversely, such series may be re-
garded as Fourier series expansions of the above-mentioned functions).

• In Sect. 4.2, we treat ln ln-integrals, most of which are obtained by a simple change
of variable of integrals from Sect. 4.1. In the same section, we also show that
Vardi’s hypothesis about the relationship between the argument of the Γ -function
and the degree in which the poles of the corresponding integrand are the roots of
unity is not true in general (exercise no. 30).

• Section 4.3 is devoted to arctangent integrals. Similarly to logarithmic integrals,
arctangent integrals can be roughly classified into several categories: compara-
tively simple, complete and closely related (such as, e.g., exercise no. 40 where
an analog of the second Binet’s formula for the logarithm of the Γ -function is
derived).

• In Sect. 4.4, we show that some slight modifications of the method developed in
Sect. 3 may be quite fruitful for the evaluation of certain integrals containing log-
arithm of the Γ -function and the polygamma functions.

• Lastly, in Sect. 4.5 we put exercises and theorems related to the values of the Γ -
function at rational arguments and to the Stieltjes constants. Mostly, these results
are deduced from precedent exercises. For instance, by means of finite orthogonal
representations obtained for the Malmsten’ integrals in Sect. 4.1, we prove several
interesting theorems concerning the logarithm of the Γ -function at rational argu-
ments, including some variants of Parseval’s theorem (exercises no. 58–62). By the
way, with the help of the same technique one can derive similar theorems implying
polygamma functions. In the second part of Sect. 4.5, we show that some com-
plete Malmsten’s integrals, which were previously evaluated in Sect. 4.1, may be
also expressed by means of the first generalized Stieltjes constants. This connec-
tion between Malmsten’s integrals of a real discrete and of a continuous complex
parameters is not only interesting in itself, but also permits evaluation of the first
generalized Stieltjes constant γ1(p) at p = 1

2 , 1
3 , 1

4 , 1
6 , 2

3 , 3
4 , 5

6 by means of el-
ementary functions, the Euler’s constant γ , the first Stieltjes constant γ1 and the
Γ -function (see exercise no. 64). However, it is still unknown if any first gener-
alized Stieltjes constant at rational argument may be expressed in the same way
(from this point of view, the evaluation of γ1(1/5) could be of special interest). In
this framework, we also discovered that the sum of the first generalized Stieltjes
constant γ1(p), p ∈ (0,1), with its reflected version γ1(1 − p) may be expressed,
at least for seven different rational values of p, in terms of elementary functions,
the Euler’s constant γ and the first Stieltjes constant γ1. At the same time, it is
not known if other sums γ1(p)+γ1(1−p) share the same property. An alternative
evaluation of integrals from exercises no. 65–66 could probably provide some light
on this problem.
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Finally, answers for all exercises were carefully verified numerically with Maple
12 (except exercises with Stieltjes constants which were verified with Wolfram Al-
pha Pro). By default, if nothing is explicitly said, the presented result coincides with
the numerical one. Actually, only in few cases Maple 12 fails to correctly evaluate
integrals. For instance, it fails both numerically and symbolically to evaluate the first
integral on the left in (1). Maple 12.0 gives (−π ln 2 + iπ2)/4 ≈ 0.544 + i 2.467,
while it is clear that this integral has no imaginary part at all, and the real one is nei-
ther correctly evaluated. By the way, authors of [44] also reported incorrect numerical
and symbolical evaluation of this integral by Mathematica 6.0. However, unlike [44],
we will not specify wherever Maple 12 is able or unable to evaluate integrals analyt-
ically, because in almost all cases Maple 12 was unable to do it.

1.2 Notations

Throughout the manuscript, following abbreviated notations are used: γ =
0.5772156649 . . . for the Euler’s constant, γn for the nth Stieltjes constant, γn(p) for
the nth generalized Stieltjes constant at point p,8 G = 0.9159655941 . . . for Cata-
lan’s constant, �x� for the integer part of x, tg z for the tangent of z, ctg z for the cotan-
gent of z, ch z for the hyperbolic cosine of z, sh z for the hyperbolic sine of z, th z for
the hyperbolic tangent of z, cth z for the hyperbolic cotangent of z.9 In order to avoid
any confusion between compositional inverse and multiplicative inverse, inverse
trigonometric and hyperbolic functions are denoted as arccos, arcsin, arctg, . . . and
not as cos−1, sin−1, tg−1, . . . . We write Γ (z), Ψ (z),Ψ1(z),Ψ2(z),Ψ3(z), . . . ,Ψn(z)

to denote, respectively, gamma, digamma, trigamma, tetragamma, pentagamma, . . . ,
(n − 2)th polygamma functions of argument z. The Riemann ζ -function, the η-
function (known also as the alternating Riemann ζ -function) and the Hurwitz ζ -
function are, respectively, defined as
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1
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v �= 0,−1,−2, . . . , with Re s > 1 for the ζ -functions and Re s > 0 for the η-function.
Where necessary, these definitions may be extended to other domains by the principle
of analytic continuation. For example, one of the most known analytic continuations
for the Hurwitz ζ -function is the so-called Hermite representation
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which extends ζ(s, v) to the entire complex plane except at s = 1, see e.g. [9, vol. I,
p. 26, Eq. 1.10(7)]. Note also that the η-function may be easily reduced to the Rie-

8We remark, in passing, that by convention γn ≡ γn(1) for any natural n.
9Most of these notations come from Latin, e.g “ch” stands for cosinus hyperbolicus, “sh” stands for sinus
hyperbolicus, etc.
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mann ζ -function η(s) = (1 − 21−s)ζ(s), while the Hurwitz ζ -function is an indepen-
dent transcendent (except some particular values). Moreover, the alternating Hurwitz
ζ -function η(s, v) may be similarly reduced to the ordinary Hurwitz ζ -function
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v �= 0,−1,−2, . . ., Re s > 0. Re z and Im z denote, respectively, real and imaginary
parts of z. Natural numbers are defined in a traditional way as a set of positive inte-
gers, which is denoted by N. Kronecker symbol of arguments l and k is denoted by
δl,k . Letter i is never used as index and is

√−1. Complex integration over region A�
Im z � B means that the complex line integral is taken around an infinitely long hor-
izontal strip delimited by inequality A � Im z � B , where (A,B) ∈ R

2 (i.e. the inte-
gration contour is a rectangle with vertices at [R + i A,R + i B,−R + i B,−R + i A]
with R → ∞. The notation resz=a f (z) stands for the residue of the function f (z) at
the point z = a. Other notations are standard. Finally, we remark that the references
to the formulas are given between parentheses “( )”, those to the number of exercise
from Sect. 4 are preceded by “no.”; the bibliographic references are given in square
brackets “[ ]”.

2 Malmsten’s method and its results

2.1 Malmsten’s original proof of the integral formula (1)

The proof is presented in a way closest to the original [41]; we have only replaced the
old notations by the new ones, as well as correcting numerous misprints in formulas
(by the way, [40] contains much less misprints). In the effort to make it more accessi-
ble for the readers, several modern references were also added, but, of course, the old
ones are also left. These references are marked with an ∗ (only in this subsection).

Malmsten begins with the elementary integral
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10This operation is permitted because the considered improper integral is uniformly convergent with re-
spect to v [34, p. 44, § 1.12]*, [58, vol. II, pp. 262–269]*, [10, pp. 175–179]*.
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The latter logarithm is then replaced by one of Frullani’s integrals [34, pp. 406–407,
§ 12.16]∗, [50]∗, [24, p. 455]∗,
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In virtue of formulas (b′′) and (a′) from [64, vol. II, p. 186]11
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where −π < a < π and −∞ < z < ∞, expression (8) may be rewritten as follows:
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−π < a < π . Now make a change of variable in the last integral by putting y = e−z.
This yields
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≡ Ta(x), (10)

−π < a < π , where the last integral was designated by Ta(x) for brevity. It can be
easily demonstrated that if the parameter a is chosen so that a = πm/n, numbers m

and n being positive integers such that m < n (in other words, if a is a rational part of
π ), then, the integral on the right part of the last equation may be always expressed

11These formulas may be also derived by contour integration methods, see e.g. [59, pp. 186, 197–198]∗ ,
[69, p. 132]∗ , [23, pp. 276–277]∗ .
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in terms of the Γ -function. The differentiation of Ta(x) with respect to x gives
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But if the parameter a is a rational part of π , the latter integral, in virtue of what was
established in [64, vol. II, pp. 163–165], is
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By substituting these formulas into the right part of (11), and by calculating the an-
tiderivative, we obtain

Ta(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 + 2
n−1∑
l=1

(−1)l−1 sin(la) ln

{
Γ
(

x+n+l
2n

)
Γ
(

x+l
2n

)
}

, if m + n is odd,

C2 + 2

�1
2 (n−1)�∑

l=1

(−1)l−1 sin(la) ln

{
Γ
(

x+n−l
n

)
Γ
(

x+l
n

)
}

, if m + n is even,

(12)

where C1 and C2 are constants of integration. In order to find them, the following
procedure is adopted. Put in the last formula, first x = r , and then x = s. Subtracting
one from another and dividing by minus two, we have 	a(r, s) ≡ 1

2 [Ta(s)−Ta(r)] =

1ˆ

0

yr(1 − ys−r ) sina

1 + 2y cosa + y2
· dy

ln 1
y

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−1∑
l=1

(−1)l−1 sin(la) ln

{
Γ
(

s+n+l
2n

)
Γ
(

r+l
2n

)
Γ
(

r+n+l
2n

)
Γ
(

s+l
2n

)
}

, if m + n is odd,

�1
2 (n−1)�∑

l=1

(−1)l−1 sin(la) ln

{
Γ
(

s+n−l
n

)
Γ
(

r+l
n

)
Γ
(

r+n−l
n

)


(

s+l
n

)
}

, if m + n is even.
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The difference between 	a(0,1) and 	a(1,2) yields

1ˆ

0

(1 − 2y + y2) sina

1 + 2y cosa + y2
· dy

ln 1
y

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−1∑
l=1

(−1)l−1 sin(la) ln

⎧⎨
⎩

Γ 2
(

n+l+1
2n

)
Γ
(

l+2
2n

)
Γ
(

l
2n

)
Γ 2
(

l+1
2n

)
Γ
(

n+l
2n

)
Γ
(

n+l+2
2n

)
⎫⎬
⎭ ,

if m + n is odd,

�1
2 (n−1)�∑

l=1

(−1)l−1 sin(la) ln

⎧⎨
⎩

Γ 2
(

n−l+1
n

)
Γ
(

l+2
n

)
Γ
(

l
n

)
Γ 2
(

l+1
n

)
Γ
(

n−l
n

)
Γ
(

n−l+2
n

)
⎫⎬
⎭ ,

if m + n is even.

Over and over again from (12) for x = 1, we get

1ˆ

0

(1 − 2y + y2) sina

1 + 2y cosa + y2
· dy

ln 1
y

= (1 + cosa)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 + 2
n−1∑
l=1

(−1)l−1 sin(la) ln

⎧⎨
⎩

Γ
(

1+n+l
2n

)

Γ
(

1+l
2n

)
⎫⎬
⎭ , if m + n is odd,

C2 + 2

�1
2 (n−1)�∑

l=1

(−1)l−1 sin(la) ln

⎧⎨
⎩

Γ
(

1+n−l
n

)

Γ
(

1+l
n

)
⎫⎬
⎭ , if m + n is even.

By comparing last two expressions, one may easily identify both constants of inte-
gration:

⎧⎪⎪⎨
⎪⎪⎩

C1 = sina · ln 2n

1 + cosa
= tg

a

2
· ln 2n,

C2 = sina · lnn

1 + cosa
= tg

a

2
· lnn.

In the final analysis, the substitution of these values into (12) yields

Ta(x) =
∞̂

0

shau

shπu
ln
(
x2 + u2)du
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tg
πm

2n
· ln 2n + 2

n−1∑
l=1

(−1)l−1 sin
πml

n
· ln

⎧⎨
⎩

Γ
(

1
2 + x+l

2n

)
Γ
(
x+l
2n

)
⎫⎬
⎭ ,

if m + n is odd,

tg
πm

2n
· lnn + 2

�1
2 (n−1)�∑

l=1

(−1)l−1 sin
πml

n
· ln

{
Γ
(
1 − l−x

n

)
Γ
(
l+x
n

)
}

,

if m + n is even,

(13)

where a ≡ πm/n. Now, one can easily deduce formula (1).12 Putting m = 1 and
n = 2 in (13), we obtain

∞̂

0

ln(u2 + x2)

2 ch
( 1

2πu
) du = 2 ln

⎧⎨
⎩

2Γ
(

x+3
4

)

Γ
(

x+1
4

)
⎫⎬
⎭ .

By making a suitable change of variable in the above integral, and by taking into
account that the definite integral of ch−1x over x ∈ [0,∞) equals π/2, the latter
equation takes the form

∞̂

0

ln(u2 + x2)

chu
du = 2π ln

⎧⎨
⎩

√
2π Γ

(
x

2π
+ 3

4

)

Γ
(

x
2π

+ 1
4

)
⎫⎬
⎭ . (14)

Setting x = 0 yields immediately formula (1) in its hyperbolic form. �
By using a similar procedure and with the help of previous results, Malmsten also

evaluated

La(x) ≡
∞̂

0

chau

chπu
ln
(
x2 + u2)du (15)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sec
πm

2n
· ln 2n + 2

n∑
l=1

(−1)l−1 cos
(2l − 1)mπ

2n
· ln

⎧⎨
⎩

Γ
(

1
2 + 2x+2l−1

4n

)

Γ
(

2x+2l−1
4n

)
⎫⎬
⎭ ,

if m + n is odd,

sec
πm

2n
· lnn + 2

�1
2 (n−1)�∑

l=1

(−1)l−1 cos
(2l − 1)mπ

2n
· ln

⎧⎨
⎩

Γ
(

1 − 2l−1−2x
2n

)

Γ
(

2l−1+2x
2n

)
⎫⎬
⎭ ,

if m + n is even,

12From here, we shorten Malmsten’s proof since the result is almost straightforward. Malmsten’s proof
was actually longer because he aimed for more general formulas.
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where a ≡ πm/n. The reader can find this result on the p. 41 [40, formula (46)] and
on the p. 28 [41, formula (70)].

In some particular cases, right parts of (13) and (15) may be largely simplified,
and sometimes, they even can be expressed in terms of only elementary functions.
For example,

Tπ
2
(1) =

∞̂

0

ln(1 + u2)

ch
( 1

2πu
) du = 4 ln

2Γ (1)

Γ (1/2)
= 2 ln

4

π
, (16)

or

T 2π
3

(
3

2

)
=

∞̂

0

sh
( 2

3πu
)

shπu
ln

(
9

4
+ u2

)
du = √

3

⎧⎨
⎩ln 6 + ln

Γ
(

11
12

)
Γ
(

13
12

)

Γ
(

5
12

)
Γ
( 7

12

)
⎫⎬
⎭

= √
3 ln

(
1

2
ctg

π

12

)
,

or more general integrals

Tmπ
n

(
n

2

)
=

∞̂

0

sh
(

m
n
πu
)

shπu
ln

(
n2

4
+ u2

)
du

=
n−1∑
l=1

(−1)l−1 sin
πml

n
· ln

{(
n

2
− l

)
ctg

(
π

4
− πl

2n

)}
,

and

Lmπ
n

(
n

2

)
=

∞̂

0

ch(m
n
πu)

chπu
ln

(
n2

4
+ u2

)
du

=
n∑

l=1

(−1)l−1 cos
(2l − 1)mπ

2n
· ln

{(
n + 1

2
− l

)
ctg

(
π

4
− π(2l − 1)

4n

)}
,

which hold both only for m + n odd and where logarithms in right parts should be
regarded as limits when the index l = n/2 and l = (n + 1)/2 respectively, see [40,
formulas (13), (21), (26), (55)],13 [41, formulas (8), (18), (23), (79)], [62, Table 258-
1,6,10,9], [61, Table 275-1,10,16,15]. Many other logarithmic integrals—which can
be expressed in a closed form—may be also found in [40] and [41].

At the end of this historical excursion, it may be of interest to remark that Legendre
was not far from Malmsten’s formula (1) in its hyperbolic form. On p. 190 [64, vol. II]

13There is a misprint in formula (13): the sign “−” in the denominator of the integrand should be replaced
by “+”.
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we find

∞̂

0

dx

(eπx + e−πx)(m2 + x2)
= 1

4m

{
Ψ

(
m

2
+ 3

4

)
− Ψ

(
m

2
+ 1

4

)}
,

where m is not necessarily integer. Multiplying both sides by 2m and computing the
antiderivative yields

∞̂

0

ln(m2 + x2)

eπx + e−πx
dx = lnΓ

(
m

2
+ 3

4

)
− lnΓ

(
m

2
+ 1

4

)
+ C.

Notwithstanding, the constant of integration C is not easy to determine, and this task
was achieved, albeit differently, by Malmsten and colleagues (C = 1

2 ln 2), see also
comments on pp. 25–26 in [40]. In like manner, the second Binet’s formula for the
logarithm of the Γ -function may be also derived from Legendre’s work [64] (see, for
more details, exercise no. 40).

2.2 Brief discussion of other results obtained by Malmsten and his colleagues

Many other similar results were obtained by Malmsten and colleagues. Of course,
they noticed that the hyperbolic form of the integrand could be transformed into that
containing ln lnx or ln ln 1

x
in the numerator, and many valuable results for such inte-

grals were obtained as well. Among these results, the most magnificent and remark-
able are perhaps these two:

1ˆ

0

xn−2 ln ln 1
x

1 + x2 + x4 + · · · + x2n−2
dx =

∞̂

1

xn−2 ln lnx

1 + x2 + x4 + · · · + x2n−2
dx (17)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π

2n
tg

π

2n
ln 2π + π

n

n−1∑
l=1

(−1)l−1 sin
πl

n
· ln

⎧⎨
⎩

Γ
(

1
2 + l

2n

)
Γ
(

l
2n

)
⎫⎬
⎭ , n = 2,4,6, . . .

π

2n
tg

π

2n
lnπ + π

n

1
2 (n−1)∑
l=1

(−1)l−1 sin
πl

n
· ln

{
Γ
(
1 − l

n

)
Γ
(

l
n

)
}

, n = 3,5,7, . . .

see [40, p. 12], [41, p. 7] or [61, Table 191-5], [62, Table 148-4], [28, no. 4.325-9],
and

1ˆ

0

xn−2 ln ln 1
x

1 − x2 + x4 − · · · + x2n−2
dx =

∞̂

1

xn−2 ln lnx

1 − x2 + x4 − · · · + x2n−2
dx (18)

= π

2n
sec

π

2n
· lnπ + π

n
·
1
2 (n−1)∑
l=1

(−1)l−1 cos
(2l − 1)π

2n
· ln

⎧⎨
⎩

Γ
(

1 − 2l−1
2n

)

Γ
(

2l−1
2n

)
⎫⎬
⎭
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holding for n = 3,5,7, . . ., see [40, p. 42, Eq. (48)] (the latter result does not appear in
other sources). Particular cases of these formulas were rediscovered several times in
different forms by various authors, see e.g. no. 3.1–3.2, 3.5–3.614 [2] or examples 7.3,
7.5 [44]. Moreover, Malmsten’s integrals (1) and (2a), (2b) are themselves particular
cases of the above integrals.

Malmsten and colleagues also treated some integrals having continuous powers of
the logarithm in the numerator and denominator. Evidently, only in few cases could
authors evaluate such integrals in a closed-form. However, such integrals permitted,
inter alia, to obtain the ln ln-integrals as a derivative with respect to the power of the
logarithm:

1ˆ

0

P(x) ln ln 1
x

Q(x)
dx = lim

a→0

{
d

da

1ˆ

0

P(x) lna 1
x

Q(x)
dx

}
,

where P(x) and Q(x) denote polynomials in x.
An important part of both Malmsten’s works [40] and [41] is also devoted to cer-

tain logarithmic series, to series related to ζ -functions and to some infinite products.
Among the results concerning logarithmic series, the most striking is, with no doubts,
the evaluation of the series of the kind

∞∑
n=1

sinan · lnn

n
, 0 < a < 2π, (19)

see Fig. 2 (for more details, see also exercise no. 20). This result, known as the Fourier
series expansion for the logarithm of the Γ -function, is usually (and erroneously)
attributed to Ernst Kummer who derived this expansion only in 1847, i.e. 5 years
later. Another important result in the field of series concerns certain infinite sums
related to ζ -functions. The famous reflection formula for the ζ -function

ζ(1 − s) = 2ζ(s)Γ (s)(2π)−s cos
πs

2
, s �= 0. (20)

is well-known and is usually attributed to Riemann who derived it in 1859 [54], [19,
p. 861], [31, p. 23], [71, p. 269]. At the same time, it is much less known that Malm-
sten and colleagues derived analogous relationships for two other “similar” series

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M(s) ≡ 2√
3

∞∑
n=1

(−1)n+1

ns
sin

πn

3
, M(1 − s) = 2√

3
M(s)Γ (s)3s(2π)−s sin

πs

2
,

L(s) ≡
∞∑

n=0

(−1)n

(2n + 1)s
, L(1 − s) = L(s)Γ (s)2sπ−s sin

πs

2
,

(21)

14It seems, however, that there is a misprint in exercise no. 3.6 [2]. In the first line, the term x5 should be
removed from the denominator of the integrand.
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Fig. 2 Fragments of pp. 62 (top) and 74 (bottom) from the Malmsten et al.’s dissertation [40], C desig-
nating the Euler’s constant γ . Writing a − π instead of a in the former series yields (19), which is the
principal term in the Fourier series expansion of the logarithm of the Γ -function

Fig. 3 Bottom of p. 23 from the Malmsten et al.’s dissertation [40]. Top, we see the reflection formula for
M(s); bottom, for L(s). Moreover, similar reflection formulas were later derived by Malmsten in [41] for
other series similar to the η-function

0 < s < 1, already in 1842, see Fig. 3. The function L(s) is directly related to the
alternating Hurwitz ζ -function L(s) = 2−sη(s, 1

2 ), and therefore, Malmsten’s func-
tional equation may be rewritten as

η

(
1 − s,

1

2

)
= 2η

(
s,

1

2

)
Γ (s)(2π)−s sin

πs

2
,

which holds even when s → 0, if the right part is regarded as a limit. The similitude to
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(20) is striking, although η(s, 1
2 ) is an independent transcendent of ζ(s). By the way,

the above reflection formula (21) for L(s) was also obtained by Oscar Schlömilch;
in 1849 he presented it as an exercise for students [55], and then, in 1858, he pub-
lished the proof [56]. Yet, it should be recalled that an analog of formula (20) for the
alternating ζ -function η(s) and formula (21) for L(s) were already conjectured in
1749 by Euler, see pp. 94 and 105 of [20] respectively. However, Euler’s results are
usually not considered as rigorous proofs. Euler, first, studied the ratio η(1 −n)/η(n)

for n = 1,2, . . . ,10. Then, by the method of mathematical induction, he conjectured
that in general

η(1 − n)

η(n)
= − (2n − 1)(n − 1)!

(2n−1 − 1)πn
cos

πn

2
, n = 1,2,3, . . . (22)

Next, Euler showed that this formula remains valid for negative n as well. Finally, he
verified it analytically for n = 1

2 and numerically for n = 3
2 .15 As regards the function

L(s), Euler contented himself with the statement of the reflection formula (21) and
added that it can be derived analogously. By the way, for Euler, formula (22) was
not only interesting in itself, but was also a means by which could probably help in
the closed-form evaluation of η(n) for n = 3,5,7, . . . But since η(1 − n) for such
n vanishes and so does cos 1

2πn, he faced (after the performance using l’Hôpital’s
rule) a more difficult series

∑
(−1)k−1kn−1 lnk, k � 1. Note that the main advantage

of Euler’s (22) and Malmsten’s (21) reflection formulas is that they can be verified
numerically because in each both sides converge for 0 < s < 1, while Riemann’s
formula (20) requires the notion of analytic continuation.

Malmsten and colleagues also studied integrals containing an arctangent with hy-
perbolic functions. These studies resulted in an interesting relationship between the
Γ -function and the Ψ -function of a rational argument:

Ψ

(
m

n

)
= −γ − ln 2πn − π

2
ctg

πm

n
− 2

n−1∑
l=1

cos
2πml

n
· lnΓ

(
l

n

)
, m < n (23)

where m and n are positive integers [40, p. 57, and see also pp. 56 and 72]. Malmsten
and colleagues noticed that this relationship had not received sufficiently attention of
mathematicians. On the one hand, the reader may remark that the right part of (23)
may be easily transformed into elementary functions with the help of the reflection
formula for the Γ -function. The pairwise summation of all terms in the sum over
l (the first term with the last one, the second term with that before last, and so on)
makes the Γ -functions in the right part totally vanish:

al + an−l = cos
2πml

n
·
{

lnΓ

(
l

n

)
+ lnΓ

(
1 − l

n

)}

= cos
2πml

n
·
{

lnπ − ln sin
πl

n

}
, (24)

15A sketch of the Euler’s proof of formula (22) may be also found in [31, pp. 23–26].
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where al denotes the lth term of the aforementioned sum.16 In the case in which n

is even, there will be one term which will not be concerned by the above simplifi-
cation: the middle term lnΓ (1/2), but its value is well known and does not provide
any additional information about the Γ -function. Consequently, formula (23) may be
regarded as a variant of Gauss’ digamma theorem.17 On the other hand, (23) repre-
sents also a kind of discrete cosine transform (and more generally, a kind of finite
Fourier transform), which have a huge quantity of applications in engineering, espe-
cially in signal processing and related disciplines. From this point of view, Malmsten
was right when saying that these formulas were not sufficiently studied. In our work,
we will derive many similar formulas (see exercises no. 3, 6, 9, 13, 11, 14, 25, 41, 46,
48, 49 in Sect. 4). In particular, Malmsten’s integrals of the first order18 can be often
expanded in such a kind of finite Fourier series having logarithm of the Γ -function as
coefficients. As a consequence, inverse transform may be also derived; the latter, inter
alia, provides values of the Γ -function at rational argument as functions of Malm-
sten’s integrals (see exercises no. 58–61). We will also give Parseval’s theorem for
such expansions (exercise no. 62). In addition, we will show that similar connections
exist also for higher polygamma functions (exercise no. 48-b), as well as for Stieltjes
constants (exercises no. 63–67).

Finally, we remark that in [40] some quantity of results were derived by means of
divergent series,19 but they were later re-obtained by Malmsten [41] by using other
methods.

2.3 Malmsten’s results and the Gradshteyn and Ryzhik’s tables

The famous Gradshteyn and Ryzhik’s tables [28] contains more than 20 formulas due
to Malmsten and his colleagues. They were borrowed via Bierens de Haan’s tables
[62] and [61]. These are, for example, formulas no. 4.325-3,4,5,6,7,8,9, both formulas
in no. 4.332, all formulas in no. 4.371 and 4.372, first three formulas in no. 4.373,
formula no. 4.267-3 and some others. By the way, several errors crept into no. 4.372:
in no. 4.372-1 and 4.372-2, the lower bound of both integrals should be 0 instead
of 1. The same errors appear in Prudnikov et al.’s tables no. 2.6.29-1 and no. 2.6.29-2
[53, vol. I].20 Also, the upper bound of the sum for the case “m+n is even” 1

2 (n− 1)

should be replaced by the integer part � 1
2 (n − 1)� (because when m + n is even, n

is not necessarily odd). Moreover, one should also add m < n (otherwise, integrals
on the left diverge). In no. 4.325-7, as showed in Malmsten’s et al. works, parameter
t should be in the range (−π,+π). This is because the integral on the left is 2π -
periodic, while the right part is not periodic; both parts coincide only if t ∈ (−π,+π).

16We performed similar simplification for the Ψ -function in exercise no. 11, formula (48).
17Gauss presented the proof of this theorem in January 1812 [26].
18By the order of Malmsten’s integral we mean the order of poles of the corresponding integrands.
19The use of divergent series was especially common in the 18th century, see, for instance, the excellent
monograph [31].
20One of these two errors comes from the Bierens de Haan’s tables (latter borrowed them in part from
misprints in Malmsten’s work [41]; Bierens de Haan even complained about the number of misprints in
this work, see [61, p. 265]). For example, integrals’ bounds are incorrect in [62, Table 148-1,2,3,4], [61,
Table 191-1,2,3,4,5,6], [41, Eq. (10), (12) for both integrals]. The reader should be also careful with these
sources since integrands in Gradshteyn and Ryzhik’s tables are presented in other form.
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Another error crept into no. 4.332-2. This integral is a rewritten version of (2a), and
hence, its right-hand side must be exactly as in (2a), i.e.

√
2π should be replaced

by 3
√

2π (this misprint was previously pointed out by the authors of [44]). All these
errors are present in the last 7th edition of the Gradshteyn and Ryzhik tables and in
all other editions, including the original Russian edition.

3 The proposed method

3.1 Preliminaries

Malmsten and colleagues used for their derivations elementary functions and the Γ -
function, without resorting to other special functions. The proposed method neither
uses special functions, except the Γ -function, and is based on the theory of functions
of a complex variable, and more precisely, on the contour integration technique. On
the one hand, such a method turns out to be much more straightforward than Malm-
sten’s method and, at the same time, it has wider applicability. On the other hand, it is
simpler than most modern methods which tend to resort to “heavy” special functions.
Moreover, the proposed method allows one to evaluate not only Malmsten’s integrals
from [40] and [41], but also many others (such results are given in Sect. 4).

The theory of functions of a complex variable, also known as complex analysis,
is one of the most beautiful and useful branch of mathematics having many versa-
tile applications. One such applications is the evaluation of integrals by means of
Cauchy’s residue theorem. This application is also known as the contour integration
method. Cauchy’s residue theorem states that for the function f (z)—which is ana-
lytic and single-valued inside and on a simple closed curve L except possibly for a
finite number of isolated singularities—the contour integral

‰

L

f (z) dz =

⎧⎪⎪⎨
⎪⎪⎩

0, if f (z) has no singularities inside L,

2πi

m∑
l=1

res
z=zl

f (z), otherwise,
(25)

where {zl}ml=1 are the isolated singularities of the function f (z) enclosed by the con-
tour L. Technically, the application of the residue theorem for the evaluation of a
given integral is done in two stages. First, by decomposition of the integration path L

the line integral on the left in (25) is reduced to the evaluated integral (it can be done
in many different ways; often, the latter appears as by-product). Then, one calculates
the sum of the residues on the right in (25). The final result is obtained by equating
both parts of (25). Numerous examples of such evaluations may be found in classical
complex analysis literature [3, 16, 22, 23, 25, 32, 34, 42, 43, 59, 60, 69], [58, vol. III,
part 2], [33, 65].

A major difficulty encountered when evaluating logarithmic integrals21 by
Cauchy’s residue theorem consists in the following trade-off. On the one hand, the
logarithm, being a typical multiple-valued function, has branch points, which should

21We will not consider here indirect methods, such as, for example, evaluation of logarithmic integrals
based on the differentiation of the integrand (which does not contain a logarithm) with respect to a param-
eter.
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not lie within the integration contour. On the other hand, not any integration path will
lead to the wanted integral. In simple cases, e.g.,

∞̂

0

R(x) lnn x dx,

∞̂

0

R(x) ln
(
x2 + a2)dx,

∞̂

0

R(x)

ln2 x + π2
dx,

where a > 0, n ∈ N and R(x) denotes an arbitrary rational function of x (even in the
first two cases), the evaluation may be succeed by considering respectively

‰
R(z) lnn(z) dz,

‰
R(z) ln(z + ia) dz,

‰
R(z)

ln z − πi
dz,

taken around simple integration contours (e.g., semi-circle, circle with a cut) with
the help of Jordan’s lemma, see e.g. [59, pp. 187–188, 193–194, 197–198],22 [69,
pp. 129–132], [22, chapter VI, § 3], [23, pp. 281–296]. But the evaluation of more
complicated logarithmic integrals may become a difficult task, because it may be
very hard (or even impossible) to find an appropriate line integral. A typical example
of such logarithmic integrals is the simplest Malmsten’s integral (1). Consider, for
example, its hyperbolic form. On the one hand, Jordan’s lemma cannot be applied
to this integral (it is sufficient to note that the integrand remains unbounded on the
imaginary axis). On the other hand, the integrand has infinitely many poles in both
semi-circles, which leads to an infinite series on the right part of (25). As regards
the ln ln-form of Malmsten’s integral (1), the integrand fulfills conditions of Jordan’s
lemma in both half-planes, but on the one hand, it has two branch points, 0 and 1,
which should be properly indented, and on the other hand, the integral over (−∞,0]
can be hardly reduced to that over [0,+∞). Thus, in order to evaluate such kinds of
integrals, one may be led to consider unusual integration paths and more sophisticated
forms of the integrand.

3.2 Introduction

Consider the following general family of logarithmic integrals:

+∞ˆ

−∞
R
(
ex
)

ln
(
x2 + a2)dx, a ∈ R, (26)

where R(·) denotes a rational function, and its particular case a = 0

+∞ˆ

−∞
R
(
ex
)

ln |x|dx =
∞̂

1

R(u) + R(u−1)

u
ln lnudu =

1ˆ

0

R(y) + R(y−1)

y
ln ln

1

y
dy ,

22The readers of this book should beware of misprints and of some incorrect results. Answers in exercises
no. 84, 88, 91 are incorrect; on the p. 189, 2πi is forgotten in the right part of equation (1). Several errors
were corrected in the recent second edition of this book, but the few ones are still present, e.g. answer in
no. 7.91 is incorrect, the above-mentioned coefficient 2πi is absent.
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where we made two consecutive changes of variable x = lnu and u = y−1. Denoting
for brevity

Q(u) ≡ 1

u

{
R(u) + R

(
u−1)} (27)

the last line takes the form

+∞ˆ

−∞
R
(
ex
)

ln |x|dx =
∞̂

1

Q(u) ln lnudu =
1ˆ

0

Q(y) ln ln
1

y
dy. (28)

Thus, for any integral of the form (28), we may formulate the following statement:
if it is possible to find such a rational function R(u) that the function Q(u) may
be represented in the form (27), then last two integrals in (28) may be evaluated
via integral (26). The latter, as we come to see later, may be always expressed in
terms of the Γ -function and its logarithmic derivatives. Equation (27) implies also
that function Q(u) obeys the following functional relationship: Q(u−1) = u2Q(u).
One of the consequences of this property is that the integrand (without ln ln part)
remains unchanged when bounds [1,∞) are replaced with [0,1]. Consequently, the
above statement may be reformulated as follows: if the integrand from (28) (that of
the integral in the middle) without ln ln-part, after a change of variable u = y−1,
remains invariant and only bounds [1,∞) are replaced with [0,1], i.e. if

∞̂

1

Q(u) ln lnudu =
1ˆ

0

Q(y) ln ln
1

y
dy,

then it can be always evaluated by the proposed method, and the result may be ex-
pressed in terms of the Γ -function and its logarithmic derivatives.

Now, one can remark that all ln ln-integrals that Malmsten and colleagues evalu-
ated in [40] and [41] are particular cases of integrals (28) and fulfill the above condi-
tion on Q(u). For example, the simplest Malmsten’s integral (1) is obtained by tak-
ing R(ex) = 1

4 ch−1x, which gives Q(u) = 1/(1 + u2). By the way, it is curious that
Malmsten did not notice that integrands of all his integrals obey Q(u−1) = u2Q(u).
It is also obvious that if Q(u−1) �= u2Q(u), then

∞̂

1

Q(u) ln lnudu �=
1ˆ

0

Q(y) ln ln
1

y
dy.

For instance, the following integral

∞̂

1

ln lnu

1 + u
du �=

1ˆ

0

ln ln 1
y

1 + y
dy =

∞̂

1

ln lnu

u2 + u
du =

∞̂

0

lnx

ex + 1
dx = −1

2
ln2 2

which appears as no. 4.325-1 in [28], cannot be evaluated by the proposed method,
at least directly. However, such kind of integrals can be often evaluated by other
methods. For example, in some cases, the series expansions method turns out to be
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very useful for this aim, see e.g. exercises no. 18–19 in Sect. 4. There are also other
methods that merit being mentioned in this context, but most of them resort to higher
transcendences than the Γ -function. For instance, Adamchik [2] used the Hurwitz
ζ -function and showed that if Q(y) in (28) is a cyclotomic polynomial, then the cor-
responding integral may be always expressed in terms of derivatives of the Hurwitz
ζ -function. Vardi [67], Vilceanu [68] and Bassett [8] suggested the use of the Dirich-
let L-function. As regards Medina et al. [44], the authors evaluated these integrals
with the help of polylogarithms.

3.3 The method for the evaluation of logarithmic and arctangent integrals

The Γ -function

Γ (z) =
∞̂

0

tz−1e−z dt

is one of the oldest special functions which was introduced in analysis by Leon-
hard Euler. It was studied in detail by Euler himself, as well as by many other great
mathematicians such as Carl Friedrich Gauss, Adrien-Marie Legendre, Karl Weier-
strass, Otto Hölder and many others.23 Classically, the Γ -function was defined only
for positive values of its argument z, but it is now well known that it can be ana-
lytically continued to the entire complex plane except for simple poles at the points
0,−1,−2, . . . . In addition, since for each integer n, Γ (n) = (n − 1)! �= 0, by virtue
of the reflection formula, one may easily establish that Γ -function has no zeros at all.
As a consequence, lnΓ (z) has no branch points. From the recurrence relationship for
the Γ -function Γ (z + 1) = zΓ (z), one can easily deduce an analogous functional
relationship for the logarithm of the Γ -function, denoted Λ(z) for brevity:

Λ(z + 1) − Λ(z) = ln z (29)

It is therefore apparent that the use of the logarithm of the Γ -function may lead to
the appearance of the logarithm. But why should one chose the logarithm of the Γ -
function rather than simply the logarithm? The main advantage of the Λ(z) function
over the logarithm is that the former has no branch points at all, which allows one to
use Cauchy’s residue theorem with much less restriction to the choice of the integra-
tion contour.

Let R(·) be a real rational function of ex , x ∈ R, such that for some β > 0, we
always have

β lnβ · max
ϕ∈[0,2π]

∣∣R(e±β+iϕ
)∣∣→ 0 as β → ∞. (30)

Consider now the line integral
‰

Lβ

R
(
ez
)
Λ

(
z

2πi
+ α

)
dz, α � 0

23An interesting and quite well-written historical overview on the Γ -function is given in [19]. Motivated
readers who are not afraid of French and German are also invited to take the look at these classic books
[15, 27, 49] and [6].



Malmsten’s integrals and their evaluation by contour integration 43

taken around a rectangle with vertices at [(−β,0), (+β,0), (+β,2πi), (−β,2πi)]
designated by Lβ . Bearing in mind that the positive direction is counterclockwise,
the above contour integral may be split in four integrals as follows:

‰

Lβ

R
(
ez
)
Λ

(
z

2πi
+α

)
dz =

+βˆ

−β

. . . dz+
β+2πiˆ

β

. . . dz+
−β+2πiˆ

β+2πi

. . . dz+
−βˆ

−β+2πi

. . . dz

(31)
where the integrands on the right were omitted for brevity. Now let β → ∞. Taking
all necessary precautions, the last equation becomes‰

L∞

R
(
ez
)
Λ

(
z

2πi
+ α

)
dz

= lim
β→∞

⎧⎪⎨
⎪⎩

+βˆ

−β

. . . dz +
−β+2πiˆ

β+2πi

. . . dz

⎫⎪⎬
⎪⎭ + lim

β→∞

β+2πiˆ

β

. . . dz + lim
β→∞

−βˆ

−β+2πi

. . . dz (32)

Now, if (30) holds, then it can be shown that first limit in (32) converges to some
finite non-zero quantity, while second and third limits equal zero. The latter may be
proved in the following manner. We first notice that the behavior of the logarithm of
the Γ -function in the sector | arg z| < π/2 when |z| → ∞ may be described by the
following asymptotic formula24

Λ(z) =
(

z − 1

2

)
ln z − z + 1

2
ln 2π + 2

∞̂

0

arctg(x/z)

e2πx − 1
dx

︸ ︷︷ ︸
O(z−1)

= z ln z + O(z), (33)

see e.g. [42, vol. II, pp. 315–321], [39, pp. 88–89], [22, chapter VI, § 6], [1, no.
6.1.40–6.1.41, 6.1.43–6.1.44, 6.1.50], [53, vol. I, no. 2.7.5-6], [26, p. 33]. Hence, the
integral in the second limit on the right in (32), after a change of variable z = β + iϕ,
may be estimated, for sufficiently large β , in the following manner:∣∣∣∣∣∣∣

β+2πiˆ

β

R
(
ez
)
Λ

(
z

2πi
+ α

)
dz

∣∣∣∣∣∣∣
� 2π max

ϕ∈[0,2π]

∣∣∣∣R(eβ+iϕ
)
Λ

(
β + iϕ

2πi
+ α

)∣∣∣∣

� 2π · max
ϕ∈[0,2π]

∣∣∣∣Λ
(

β + iϕ

2πi
+ α

)∣∣∣∣ · max
ϕ∈[0,2π]

∣∣R(eβ+iϕ
)∣∣

∼ β ln
β

2π
· max
ϕ∈[0,2π]

∣∣R(eβ+iϕ
)∣∣ → 0 as β → ∞

24The non-asymptotic part of this formula (that containing an infinite integral) is also known as the second
Binet’s expression for the logarithm of the Γ -function [12, pp. 335–336], [71, pp. 250–251], [9, vol. I,
p. 22, Eq. 1.9(9)] (for more details, see also exercise no. 40 in the last section of this manuscript). As
regards its asymptotic form, it was already known to Gauss [26, p. 33], and in a more simple form (for
natural z), to Euler [21, part II, Chap. VI, p. 466], to Stirling and to de Moivre.
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thanks to condition (30). In like manner, we can show that the third limit in (32)
vanishes also. Consider now the second integral in the right part of (32). By making a
change of variable z = x +2πi and by noticing that R(ez) is a 2πi-periodic function,
this integral reduces to

−β+2πiˆ

β+2πi

R
(
ez
)
Λ

(
z

2πi
+ α

)
dz = −

+βˆ

−β

R
(
ex
)
Λ

(
x

2πi
+ α + 1

)
dx.

Equation (32) may be therefore rewritten as

‰

L∞

R
(
ez
)
Λ

(
z

2πi
+ α

)
dz

= lim
β→∞

+βˆ

−β

R
(
ex
)[

Λ

(
x

2πi
+ α

)
− Λ

(
x

2πi
+ α + 1

)]
dx

= −
+∞ˆ

−∞
R
(
ex
)

ln

(
x

2πi
+ α

)
dx

= −
+∞ˆ

−∞
R
(
ex
)

ln(x + 2πiα)dx +
(

ln 2π + πi

2

)
·

+∞ˆ

−∞
R
(
ex
)
dx

︸ ︷︷ ︸
JR

. (34)

We note, in passing, that because condition (30) holds the first integral in the second
line converges, and so does the integral JR .

On the other hand, the left part of the last equation may be computed by the residue
theorem

‰

L∞

R
(
ez
)
Λ

(
z

2πi
+ α

)
dz (35)

= 2πi

{
m∑

l=1

res
z=zl

[
R
(
ez
)
Λ

(
z

2πi
+ α

)]
+ 1

2

m̃∑
l=1

res
z=z̃l

[
R
(
ez
)
Λ

(
z

2πi
+ α

)]}
,

where {zl}ml=1 are the isolated singularities of the integrand lying within the strip
0 < Im z < 2π , and {z̃l}m̃l=1 are those whose imaginary part is exactly 0 or 2π (i.e.,
they lie on the integration path). By equating right-hand sides of (34) and of (35), we
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get

+∞ˆ

−∞
R
(
ex
)

ln(x + 2πiα)dx = JR

(
ln 2π + πi

2

)
(36)

−2πi

{
m∑

l=1

res
z=zl

[
R
(
ez
)
Λ

(
z

2πi
+ α

)]
+ 1

2

m̃∑
l=1

res
z=z̃l

[
R
(
ez
)
Λ

(
z

2πi
+ α

)]}

Now, on taking real parts, we obtain

+∞ˆ

−∞
R
(
ex
)

ln
(
x2 + 4π2α2)dx = 2JR ln 2π

+4π Im

{
m∑

l=1

res
z=zl

[
R
(
ez
)
Λ

(
z

2πi
+ α

)]
+ 1

2

m̃∑
l=1

res
z=z̃l

[
R
(
ez
)
Λ

(
z

2πi
+ α

)]}

while equating imaginary parts yields

+∞ˆ

−∞
R
(
ex
)

arctg

(
2πα

x

)
dx = π

2

∞̂

0

{
R
(
ex
)− R

(
e−x
)}

dx

−2π Re

{
m∑

l=1

res
z=zl

[
R
(
ez
)
Λ

(
z

2πi
+ α

)]
+ 1

2

m̃∑
l=1

res
z=z̃l

[
R
(
ez
)
Λ

(
z

2πi
+ α

)]}

Rewriting the first equation with α = a
2π

and the second one with α = 1
2πa

, and
recalling that arctg 1

x
= π

2 sgnx − arctgx for any real x except zero, we arrive at
integral (26)

+∞ˆ

−∞
R
(
ex
)

ln
(
x2 + a2)dx = 2JR ln 2π (37)

+4π Im

{
m∑

l=1

res
z=zl

[
R
(
ez
)

lnΓ

(
z + ai

2πi

)]
+ 1

2

m̃∑
l=1

res
z=z̃l

[
R
(
ez
)

lnΓ

(
z + ai

2πi

)]}

and at another integral:

+∞ˆ

−∞
R
(
ex
)

arctg(ax) dx (38)

= 2π Re

{
m∑

l=1

res
z=zl

[
R
(
ez
)

lnΓ

(
za + i

2πai

)]
+ 1

2

m̃∑
l=1

res
z=z̃l

[
R
(
ez
)

lnΓ

(
za + i

2πai

)]}
.
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For the logarithmic integral, the particular case a = 0 may be of special interest.
From (37), we easily get

+∞ˆ

−∞
R
(
ex
)

ln |x|dx = JR ln 2π (39)

+2π Im

{
m∑

l=1

res
z=zl

[
R
(
ez
)

lnΓ

(
z

2πi

)]
+ 1

2

m̃∑
l=1

res
z=z̃l

[
R
(
ez
)

lnΓ

(
z

2πi

)]}
.

In contrast, for the arctangent integral, the limiting case a → ∞ reveals to be more
interesting. The fact that lim

a→∞ arctgax = π
2 sgnx gives the opportunity to evaluate

integrals of some odd functions over interval [0,∞). Making a → ∞, we obtain
from (38)

∞̂

0

{
R
(
ex
)− R

(
e−x
)}

dx (40)

= 4 Re

{
m∑

l=1

res
z=zl

[
R
(
ez
)

lnΓ

(
z

2πi

)]
+ 1

2

m̃∑
l=1

res
z=z̃l

[
R
(
ez
)

lnΓ

(
z

2πi

)]}
.

If R(ex) is odd then R(ex)−R(e−x) = 2R(ex), while if R(ex) is even the last integral
vanishes identically.

Formulas (37)–(40) allow one to compute many kind of different integrals con-
taining logarithms, inverse trigonometric functions and many others. For example,
these integrals

+∞ˆ

−∞

R(ex)

(x2 + a2)n
dx,

+∞ˆ

−∞

x R(ex)

(x2 + b2)n
dx, b ≡ a−1, n ∈N,

may be straightforwardly obtained from derived ones by a simple differentiation with
respect to the parameter a. In addition, the evenness or oddness of R(ex) may simply
calculations. Moreover, if the integral on the left diverges in the classical sense, in
some cases, it can be still evaluated in the sense of the Cauchy principal value with
the help of the above formulas. To illustrate these matters more vividly, the next
section provides several beautiful examples of applications.

As to the integral JR , it is difficult to treat the general case, so each integral must
be considered individually. For example, it may be simply an elementary integral.
Otherwise, its computation may be performed by the contour integration via

‰
R
(
ez
)
dz

taken around an infinitely long rectangle of breadth π or 2π by the method analogous
to that in (31). Such integrals are also exhaustively treated in [59, pp. 186, 197–198],
[69, p. 132], [23, pp. 276–277], [25].
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At the end of the demonstration, it may be of interest to remark that some quan-
tity of exercises considering similar methods of contour integration involving the
Γ -function and its derivatives are given in the excellent Russian book [23], which,
unfortunately, was never translated into other languages, and for which reason it prob-
ably remains inaccessible to most readers. It seems also quite fair to say that the above
exposition is much inspired from exercises no. 31.30–31.32. In exercise no. 31.32, the
reader is asked to prove a simpler variant of formula (37) provided R(ex) ∈ L1. Re-
grettably, despite the high complexity of problems (higher than in the well-known
collections [59] and [69]), this book does not contain solutions, nor even hints, only
answers are provided at the end of each section.

3.4 Application to Malmsten’s integrals

3.4.1 The simplest Malmsten’s integral

Let’s calculate Malmsten’s integral (1) by means of formula (37). Since the function
R = ch−1x, being a rational function of ex , it easily satisfies (30). Besides, it is a
meromorphic function having two simple poles within the strip 0 � Im z � 2π at
points πi/2 and 3πi/2. Taking additionally into account that ch−1x is even, (37)
gives

∞̂

0

ln(x2 + a2)

chx
dx = 2π Im

{
res

z= 1
2 πi

lnΓ (z+ai
2πi

)

ch z
+ res

z= 3
2 πi

lnΓ (z+ai
2πi

)

ch z

}
+ ln(2π)

+∞ˆ

−∞

dx

chx

︸ ︷︷ ︸
π

= 2π

{
lnΓ

(
3

4
+ a

2π

)
− lnΓ

(
1

4
+ a

2π

)}
+ π ln 2π. (41)

In the last line we may easily recognize Malmsten’s general formula (14). Letting
a → 0, we arrive at (1) as follows:

1

2

∞̂

0

lnx

chx
dx = 1

4
lim
a→0

∞̂

0

ln(x2 + a2)

chx
dx = π

2

{
lnΓ

(
3

4

)
− lnΓ

(
1

4

)}
+ π

4
ln 2π

= π

2
ln

{
Γ (3/4)

Γ (1/4)

√
2π

}
= π

2
ln 2 + 3π

4
lnπ − π lnΓ

(
1

4

)
, (42)

where the final simplification is done with the help of the reflection formula for the Γ -
function. The final result is, therefore, completely expressed in terms of mathematical
constants.

3.4.2 Other Malmsten’s integrals

Consider now another Malmsten’s integral, mentioned by Vardi and others re-
searchers as well, namely the integral (2b). After changes of variable y = u−1,
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u = ex , it can be rewritten as

1ˆ

0

ln ln 1
y

1 − y + y2
dy =

∞̂

1

ln lnu

1 − u + u2
du =

∞̂

0

lnx

2 chx − 1
dx

Poles of the latter integrand in the strip 0 � Im z � 2π are simple and occur at points
πi/3 and 5πi/3. Application of formula (37) yields

∞̂

0

ln(x2 + a2)

2 chx − 1
dx = 2π Im

{
res

z= 1
3 πi

lnΓ (z+ai
2πi

)

2 ch z − 1
+ res

z= 5
3 πi

lnΓ (z+ai
2πi

)

2 ch z − 1

}
(43)

+ ln(2π)

+∞ˆ

−∞

dx

2 chx − 1
︸ ︷︷ ︸

4π

3
√

3

= 2π√
3

{
lnΓ

(
5

6
+ a

2π

)
− lnΓ

(
1

6
+ a

2π

)
+ 2 ln 2π

3

}

Letting a → 0 yields

∞̂

0

lnx

2 chx − 1
dx = 1

2
lim
a→0

∞̂

0

ln(x2 + a2)

2 chx − 1
dx

= π√
3

{
lnΓ

(
5

6

)
− lnΓ

(
1

6

)
+ 2 ln 2π

3

}

= π√
3

ln

{
Γ (5/6)

Γ (1/6)

3
√

4π2

}
= 2π√

3

{
5

6
ln 2π − lnΓ

(
1

6

)}
,

which is identical with (2b). Again, at the last stage, the reflection formula was em-

ployed. Finally, in view of the fact that Γ (1/6) = 3
1
2 2− 1

3 π− 1
2 Γ 2(1/3), see e.g. [15,

p. 31], the latter formula may be written in terms of Γ (1/3), and hence

1ˆ

0

ln ln 1
y

1 − y + y2
dy =

∞̂

1

ln lnu

1 − u + u2
du =

∞̂

0

lnx

2 chx − 1
dx

= π

3
√

3

{
7 ln 2 + 8 lnπ − 3 ln 3 − 12 lnΓ

(
1

3

)}
. (44)

Analogously, it can be shown that

1ˆ

0

ln ln 1
y

1 + y + y2
dy =

∞̂

1

ln lnu

1 + u + u2
du =

∞̂

0

lnx

2 chx + 1
dx

= π

6
√

3

{
8 ln 2π − 3 ln 3 − 12 lnΓ

(
1

3

)}
. (45)
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The unique difference between integrals (44) and (45) is the location of poles of inte-
grands. For the former, they occur (for the hyperbolic form) in the strip 0 � Im z � 2π

at πi/3 and 5πi/3, while for the latter they occur at 2πi/3 and 4πi/3.
Another frequently encountered Malmsten’s integral (however, not mentioned by

Vardi) is this one:

1ˆ

0

ln ln 1
y

(1 + y)2
dy =

∞̂

1

ln lnu

(1 + u)2
du = 1

4

∞̂

0

lnx

ch2( 1
2x
) dx = 1

2

∞̂

0

lnx

chx + 1
dx (46)

see e.g. [41, p. 24], [62, Table 147-7, 257-4], [61, Table 190-7], [28, no. 4.325-3]. It
can be also evaluated by the proposed method. In the strip 0 � Im z � 2π the inte-
grand has one double pole at z = πi. Proceeding as above, we find that

∞̂

0

ln(x2 + a2)

chx + 1
dx = 2π Im

{
res

z=πi

lnΓ (z+ai
2πi

)

ch z + 1

}
+ ln(2π)

+∞ˆ

−∞

dx

chx + 1
︸ ︷︷ ︸

2

= 2

{
Ψ

(
1

2
+ a

2π

)
+ ln 2π

}
. (47)

When a tends to zero, we have

1

2

∞̂

0

lnx

chx + 1
dx = 1

4
lim
a→0

∞̂

0

ln(x2 + a2)

chx + 1
dx = 1

2

{
Ψ

(
1

2

)
+ ln 2π

}

= 1

2

{
−γ + ln

π

2

}
,

which completes the evaluation of (46). Other Malmsten’s integrals from [40] and
[41] may be evaluated similarly.

4 New results, problems and exercises

This section is designed as a collection of original exercises to be worked out by the
readers. Exercises marked with an ∗ contain new results which were never, to our
knowledge, released before (except if otherwise stated). There are also some known
results which were historically obtained by other methods. For such problems original
sources of the formulas are provided. The results are presented in a quite general
form, which is why most of the formulas contain different parameters with respect to
which they can be differentiated or integrated.
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4.1 Logarithmic integrals containing hyperbolic functions

4.1.1 Main results obtained by the contour integration method

1 By using formula (37), verify that for any a � 0 and Reb > 0
∞̂

0

ln(x2 + a2)

chbx
dx = 2π

b

{
lnΓ

(
3

4
+ ab

2π

)
− lnΓ

(
1

4
+ ab

2π

)
+ 1

2
ln

2π

b

}

Hint: Make a suitable change of variable in (41).

Nota bene: This formula for b > 0 can be found in Gradshteyn and Ryzhik’s tables
[28, no. 4.373-1].

2* Prove by the contour integration method the following formula

∞̂

0

ln(x2 + a2)

chbx + cosϕ
dx = 2π

b sinϕ

{
lnΓ

(
1

2
+ ab + ϕ

2π

)
− lnΓ

(
1

2
+ ab − ϕ

2π

)
+ ϕ

π
ln

2π

b

}

a � 0, Reb > 0, |Reϕ| < π , ϕ �= 0; for ϕ = 0, see formula (47) and exercise no. 6.
Note that this formula remains valid even for complex values of ϕ. If ϕ is imaginary
pure, then ϕ = it, t ∈R, and the denominator of the integral takes the form chx+ch t .
Such integrals can be always evaluated via the above formula. Moreover, even if ϕ

lies outside the vertical strip |Reϕ| < π , the integral can be still computed in the
sense of the Cauchy principal value. Note also that in the particular case ϕ = ±π/2,
the above formula reduces to that obtained in the previous exercise.

Hint: By considering

‰

0�Im z�2π

e−iαz

ch z + cosϕ
dz, prove first

+∞ˆ

−∞

cosαx

chx + cosϕ
dx = 2π

sinϕ
· shϕα

shπα
,

{
| Imα| < 1,

|Reϕ| < π, ϕ �= 0.

Then, let α → 0. Note that in exercise no. 28.19-4 [23], where the last integral also
appears, there is a slight inaccuracy concerning the domain of convergence: it is de-
fined only for Imϕ > 0.

Nota bene: Malmsten [41, p. 24] discovered a particular case of this formula for
a = 0, b = 1 and real ϕ ∈ (−π,+π). Formula (63) on the p. 24 in [41] is actually a
rewritten version of such a particular case (see also [61, Table 274-12 ⇒ Table 190-
9], [62, Table 257-7 ⇒ Table 147-9], [28, no. 4.371-2]). The same particular case was
independently rediscovered by Medina et al. in [44]. As regards the general formula
given above, it seems to be not new.
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3* By the contour integration method, prove that if p is a discrete parameter chosen
so that p = bm/n, where Reb > 0 and numbers m and n are positive integers such
that m < n, then for any a � 0, one always has

(a)

∞̂

0

shpx · ln(x2 + a2)

shbx
dx = π

b
tg

mπ

2n
· ln

2πn

b

+ 2π

b

2n−1∑
l=1

(−1)l sin
mπl

n
· lnΓ

(
l

2n
+ ab

2πn

)

(b)

∞̂

0

chpx · ln(x2 + a2)

chbx
dx = π

b
sec

mπ

2n
· ln

2πn

b

− 2π

b

2n−1∑
l=0

(−1)l cos
(2l + 1)mπ

2n
· lnΓ

(
2l + 1

4n
+ ab

2πn

)

(c)

∞̂

0

chpx · ln(x2 + a2)

chbx + cosϕ
dx = 2π

b
sin

mϕ

n
· cscϕ · csc

mπ

n
· ln

2πn

b

+ 2π

b sinϕ

n−1∑
l=0

{
cos

(2l + 1)mπ + mϕ

n
· lnΓ

(
2l + 1

2n
+ ab + ϕ

2πn

)

− cos
(2l + 1)mπ − mϕ

n
· lnΓ

(
2l + 1

2n
+ ab − ϕ

2πn

)}

(d)

∞̂

0

chpx · ln(x2 + a2)

chbx + 1
dx = 2πm

bn
csc

mπ

n
· ln

2πn

b

− 4πm

bn

n−1∑
l=0

sin
(2l + 1)mπ

n
· lnΓ

(
2l + 1

2n
+ ab

2πn

)

+ 2

bn

n−1∑
l=0

cos
(2l + 1)mπ

n
· Ψ
(

2l + 1

2n
+ ab

2πn

)

where in (c) |Reϕ| < π , ϕ �= 0; for ϕ = 0, see (d). For continuous and complex
values of p, see no. 63–64.

Hint: As regards exercise (a), first, put for simplicity b = 1 and rewrite the integral
for x = yn as follows:

∞̂

0

sh(mx/n) · ln(x2 + a2)

shx
dx = n

∞̂

0

shmy · ln(y2n2 + a2)

shny
dy

= 2n lnn

∞̂

0

shmy

shny
dy + n

∞̂

0

shmy · ln(y2 + (a/n)2)

shny
dy.
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Then, by noticing that the integrand of the last integral on the right is a rational func-
tion of ey and, hence, is 2πi-periodic, apply formula (38). When evaluating residues,

do not forget that function
shmz

shnz
has removable singularities at z = 0, z = πi, z =

2πi and poles of the first order at z = iπl/n, l = 1,2,3, . . . , n−1, n+1, . . . ,2n−1.
Integrals (b)–(d) are evaluated similarly.

Nota bene: Integrals (a) and (b) for b = π , as we explained in the first part of our
work, were evaluated by Malmsten and colleagues, see expressions (13) and (15),
respectively. Their formulas slightly differ from ours because they separately con-
sidered cases m + n odd and m + n even. Besides, both formulas (13) and (15) can
be further simplified. Integrals (c) and (d) seem to be not evaluated previously. For-
mula (c) is an important general formula from which several particular cases may be
derived via an appropriate limiting procedure. For example, integral d), as well as
formulas in exercises no. 6b–d may be obtained in this way.

4* Prove by the contour integration method the following general formulas

(a) p.v.

+∞ˆ

−∞

ln(x2 + a2)

shx ± sh t
dx = ± 2π

ch t

[
π

2
− arctg

a

t

]
± 4t ln 2π

ch t

± 4π

ch t
Im

{
lnΓ

(
a

2π
+ it

2π

)
− lnΓ

(
1

2
+ a

2π
− it

2π

)}

(b)

+∞ˆ

−∞

ln(x2 + 1 − t2)

shx ± sh t
dx = ± 2π

ch t

[
π

2
− arctg

√
1 − t2

t

]
± 4t ln 2π

ch t

± 4π

ch t
Im

{
lnΓ

(√
1 − t2

2π
+ it

2π

)
− lnΓ

(
1

2
+

√
1 − t2

2π
− it

2π

)}

By the way, formula (b) may be also written in a slightly different form:

(b�)

∞̂

0

ln(x2 + 1 − t2)

sh2 t − sh2 x
dx = 2π

sh 2t

[
π

2
− arctg

√
1 − t2

t

]
+ 4t ln 2π

sh 2t

+ 4π

sh 2t
Im

{
lnΓ

(√
1 − t2

2π
+ it

2π

)
− lnΓ

(
1

2
+

√
1 − t2

2π
− it

2π

)}

where in (a) a � 0, t > 0, and in (b) and (b�) 0 < t � 1.

Hint: By considering

‰

0�Im z�2π

e−iαz

sh z + sh t
dz, prove first



Malmsten’s integrals and their evaluation by contour integration 53

p.v.

+∞ˆ

−∞

e−iαx

shx + sh t
dx = πi

ch t · shαπ

{
e−iαt − eiαt chαπ

}
,

provided | Imα| < 1 and −∞ < t < ∞. Then, let α → 0.25

Nota bene: In spite of the fact that some integrals in this exercise may be evaluated
only in the sense of the Cauchy principal value, their evaluation is not as useless as it
may first appear. In fact, by an appropriate choice of the numerator of the integrand,
it is often possible to get rid of the p.v. sign. For instance, with the help of the last
formula, we may arrive at these beautiful and quite non-trivial26 convergent integrals

(c)

+∞ˆ

−∞

x + t

shx + sh t
dx = 2

∞̂

0

x shx − t sh t

sh2 x − sh2 t
dx = π2 + 4t2

2 ch t
,

(d)

+∞ˆ

−∞

x2 − t2

shx + sh t
dx = − t (π2 + 4t2)

3 ch t
,

(e)

∞̂

0

x2 − t2

sh2 x − sh2 t
dx = t (π2 + 4t2)

3 sh 2t
,

(f)

+∞ˆ

−∞

sinαx + sinαt

shx + sh t
dx = 2

∞̂

0

sinαx · shx − sinαt · sh t

sh2 x − sh2 t
dx

= 1

ch t

{
2t sinαt + π th

(
απ

2

)
cosαt

}
,

(g)

+∞ˆ

−∞

cosαx − cosαt

shx + sh t
dx = 1

ch t

{
π cth

(
απ

2

)
sinαt − 2t cosαt

}
,

(h)

∞̂

0

cosαx − cosαt

sh2 x − sh2 t
dx = 1

sh 2t

{
2t cosαt − π cth

(
απ

2

)
sinαt

}
.

The above results hold for any t ∈ (−∞,+∞) and α lying within the strip
| Imα| < 1. The reader is also asked to prove these formulas as an exercise.

25For the evaluation of the integral JR lazy readers may directly use formula 1.4.7-15 from [53, vol. I,
p. 148]. Nevertheless, it is highly recommended that readers employ the proposed method rather than the
ready formula, since the procedure for the calculation of the logarithmic integral is very similar.
26For instance, we have not found these integrals in [28], neither in [53].
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5* By using results of the previous exercise, prove that
+∞ˆ

−∞

ln |x| − ln t

shx − sh t
dx = − 2π

ch t
Im

{
ln

(
it

2π

)
− lnΓ

(
1

2
− it

2π

)}

− π2

2 ch t
+ 2t

ch t
ln

t

2π

and
∞̂

0

lnx − ln t

sh2 x − sh2 t
dx = − 2π

sh 2t
Im

{
lnΓ

(
it

2π

)
− lnΓ

(
1

2
− it

2π

)}
− π2

2 sh 2t

+ 2t

sh 2t
ln

t

2π

provided t > 0.

6* By using Cauchy’s residue theorem, prove that for any a � 0, Reb > 0 and
p = bm/n, numbers m and n being positive integers, the following formulas hold

(a)

∞̂

0

ln(x2 + a2)

ch2 bx
dx = 2

b

{
ln

π

b
+ Ψ

(
1

2
+ ab

π

)}
.

If the product ab is a rational part of π or a is zero, then the above integral may be
always expressed in terms of elementary functions and Euler’s constant γ (in virtue
of Gauss’ digamma theorem). For example:

∞̂

0

lnx

ch2 x
dx =

1ˆ

0

ln arcthx dx = ln
π

4
− γ,

∞̂

0

ln (x2 + π2)

ch2 x
dx = 2 ln

π

4
+ 4 − 2γ

etc.

(b)

∞̂

0

chpx · ln(x2 + a2)

ch2 bx
dx = πm

bn
· csc

mπ

2n
· ln

2πn

b

− 2πm

bn

2n−1∑
l=0

sin
(2l + 1)mπ

2n
· lnΓ

(
2l + 1

4n
+ ab

2πn

)

+ 1

bn

2n−1∑
l=0

cos
(2l + 1)mπ

2n
· Ψ
(

2l + 1

4n
+ ab

2πn

)
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(c)

∞̂

0

ch2 px · ln(x2 + a2)

ch2 bx
dx = πm

bn
· csc

mπ

n
· ln

πn

b

− 2πm

bn

n−1∑
l=0

sin
(2l + 1)mπ

n
· lnΓ

(
2l + 1

2n
+ ab

πn

)

+ 1

bn

n−1∑
l=0

cos
(2l + 1)mπ

n
· Ψ
(

2l + 1

2n
+ ab

πn

)
+ 1

b

{
ln

π

b
+ Ψ

(
1

2
+ ab

π

)}

(d)

∞̂

0

sh2 px · ln(x2 + a2)

ch2 bx
dx = πm

bn
· csc

mπ

n
· ln

πn

b

− 2πm

bn

n−1∑
l=0

sin
(2l + 1)mπ

n
· lnΓ

(
2l + 1

2n
+ ab

πn

)

+ 1

bn

n−1∑
l=0

cos
(2l + 1)mπ

n
· Ψ
(

2l + 1

2n
+ ab

πn

)
− 1

b

{
ln

π

b
+ Ψ

(
1

2
+ ab

π

)}

where in (b) m < 2n, and in (c)–(d) m < n.

Hint: For the integral (b), see exercise no. 3. As regards last the two integrals, they
may be obtained by a linear combination of integrals (a) and (b). In last two cases,
at the final stage, split both sums over l = 0,1,2, . . . ,2n − 1 into two sums of equal
lengths and use duplication formulas in order to simplify the result.

7* Show that for any a � 0 and Reb > 0

(a)

∞̂

0

ln(x2 + a2)

2 ch2 bx + 1
dx = πi

b
√

3
ln

Γ
(

1
2 + ab

π
+ ln(2+√

3 )
2πi

)

Γ
(

1
2 + ab

π
− ln(2+√

3 )
2πi

)

+ ln(2 + √
3)

b
√

3
ln

π

b

(b)

∞̂

0

ln(x2 + a2)

2 ch2 bx − 1
dx = π

b

{
lnΓ

(
3

4
+ ab

π

)
− lnΓ

(
1

4
+ ab

π

)
+ 1

2
ln

π

b

}

Hint: In order to get formula (a), first use formula (37), then notice that sh ln(2 ±√
3) = ±√

3 and ln(2 + √
3) = − ln(2 − √

3). At the final stage, use the duplication
formula for the Γ -function.

Nota bene: The particular case of the integral (a) for a = 0 and b = 1 may be found
in the Prudnikov et al.’s tables [53]. However, the provided expression is completely
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different and its numerical verification (performed with the help of Maple 12 and
MATLAB 7.2) fails:

∞̂

0

lnx

2 ch2 x + 1
dx

︸ ︷︷ ︸
−0.2686306939...

=
√

π

2
√

3

∞∑
n=1

(−1)n
γ + ln 4n√

n
sin

πn

3︸ ︷︷ ︸
−0.2977821762...

[53, vol. I, p. 534, no. 2.6.29-7]. A careful study of this formula shows that the error
consists in the misplaced square sign: ch2 x should be replaced by chx2, that is to
say,

∞̂

0

lnx

2 chx2 + 1
dx =

√
π

2
√

3

∞∑
n=1

(−1)n
γ + ln 4n√

n
sin

πn

3
= −0.2977821762 . . .

By the way, in a slightly different form the above formula appears in the so many
times cited Malmsten’s work [41, p. 15, Eq. (41)].

8* Prove that for any a � 0 and Reb > 0

(a)

∞̂

0

ln(x2 + a2)

ch2 bx + sin2 ϕ
dx = πi

b sinϕ
√

sin2 ϕ + 1
ln

Γ
(

1
2 + ab

π
+ lnκ

2πi

)

Γ
(

1
2 + ab

π
− lnκ

2πi

)

+ lnκ

b sinϕ
√

sin2 ϕ + 1
ln

π

b
,

where κ ≡ 1 + 2 sin2 ϕ + 2 sinϕ

√
sin2 ϕ + 1, ϕ ∈C,

(b)

∞̂

0

ln(x2 + a2)

ch2 bx − sin2 ϕ
dx = 2π

b sin 2ϕ
ln

Γ
(

1
2 + ab+ϕ

π

)

Γ
(

1
2 + ab−ϕ

π

)

+ 4ϕ

b sin 2ϕ
ln

π

b
,

⎧⎪⎨
⎪⎩

|Reϕ| < π

2
, a �= 1,

|Reϕ| � π

2
, a = 1,

where the right-hand side should be regarded as a limit in cases ϕ = 0 and ϕ = ±π/2
(a = 1). Note also that both integrals from exercise no. 7 are actually particular cases
of above ones with ϕ = π/4.

9* Prove that for any a � 0, Reb > 0 and p = bm/n, where numbers m and n are
positive integers such that m < 2n,

(a)

∞̂

0

chpx · ln(x2 + a2)

ch2 bx + sin2 ϕ
dx = π(κ

m
2n − κ− m

2n )

2b sinϕ
√

sin2 ϕ + 1
· csc

mπ

2n
· ln

2πn

b
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− π

2b sinϕ
√

sin2 ϕ + 1
Im

2n−1∑
l=0

{[
κ

m
2n lnΓ

(
2l + 1

4n
+ ab

2πn
+ lnκ

4πin

)

− κ− m
2n lnΓ

(
2l + 1

4n
+ ab

2πn
− lnκ

4πin

)]
· exp

(2l + 1)mπi

2n

−
[
κ

m
2n lnΓ

(
2l + 1

4n
+ ab

2πn
− lnκ

4πin

)

− κ− m
2n lnΓ

(
2l + 1

4n
+ ab

2πn
+ lnκ

4πin

)]
· exp

−(2l + 1)mπi

2n

}
,

where κ ≡ 1 + 2 sin2 ϕ + 2 sinϕ
√

sin2 ϕ + 1, ϕ ∈R,

(b)

∞̂

0

chpx · ln(x2 + a2)

ch2 bx − sin2 ϕ
dx = 2π

b sin 2ϕ
· sin

mϕ

n
· csc

mπ

2n
· ln

2πn

b

+ 2π

b sin 2ϕ

2n−1∑
l=0

{
cos

(2l + 1)mπ + 2mϕ

2n
· lnΓ

(
2l + 1

4n
+ ab + ϕ

2πn

)

− cos
(2l + 1)mπ − 2mϕ

2n
· lnΓ

(
2l + 1

4n
+ ab − ϕ

2πn

)}

with |Reϕ| � π/2, and where the right-hand side should be regarded as a limit in
cases ϕ = 0 and ϕ = ±π/2 (a = 1).

Hint: For exercise (a), first, evaluate the auxiliary integral JR with the help of
‰

0�Im z�π

eαz

ch2 z + sin2 ϕ
dz. This will give

∞̂

0

chαx

ch2 x + sin2 ϕ
dx = π(κα/2 − κ−α/2)

4 sinϕ
√

sin2 ϕ + 1
· csc

απ

2
, |Reα| < 2.

Then, use a similar procedure as described in no. 3. Analogously, for exercise (b),
show first that

∞̂

0

chαx

ch2 x − sin2 ϕ
dx = π sinαϕ

sin 2ϕ
· csc

απ

2
, |Reα| < 2.

10* Prove by the contour integration method that for any a � 0 and Reb > 0

(a)

∞̂

0

ln(x2 + 1)

sh2 bx
dx = 2

b

{
ln

b

π
− π

2b
− Ψ

(
b

π

)}



58 I.V. Blagouchine

(b)

∞̂

0

chbx · ln(x2 + 1)

sh2 bx
dx = 1

b

{
Ψ

(
1

2
+ b

2π

)
− Ψ

(
b

2π

)
− π

b

}
,

(c)

∞̂

0

(1 − chbx) ln(x2 + a2)

sh2 bx
dx = −2

b

{
ln

2π

b
+ Ψ

(
1

2
+ ab

2π

)}
,

(d)

∞̂

0

ln(x2 + a2)

sh2 bx + cos2 ϕ
dx = 2π

b sin 2ϕ
ln

Γ
(

1
2 + ab+ϕ

π

)

Γ
(

1
2 + ab−ϕ

π

) + 4ϕ

b sin 2ϕ
ln

π

b

⎧⎪⎨
⎪⎩

|Reϕ| < π

2
, if a �= 1,

|Reϕ|� π

2
, if a = 1,

where in the last expression the right part must be considered as a limit for ϕ = 0 and
ϕ = ±π/2 (a = 1).

Nota bene: Formula (a), in the unsimplified form, can be found in Bierens de Haan
tables [62, Table 258-5] and in [28, no. 4.373-4]. Formulas (b)–(d) seem to be
new.

11* By using the contour integration method prove that if p is a rational part of b,
i.e. p = bm/n, where b is some positive parameter and numbers m and n are positive
integers, then for any a > 0,

(a)

∞̂

0

sh2 px · ln(x2 + a2)

sh2 bx
dx = 1

b

(
1 − πm

n
ctg

πm

n

)
· ln

πn

b

+ 2mπ

bn

n−1∑
l=1

sin
2πml

n
· lnΓ

(
l

n
+ ab

πn

)
− 1

bn

n−1∑
l=1

cos
2πml

n
· Ψ
(

l

n
+ ab

πn

)

+ 1

b
Ψ

(
ab

π

)
− 1

bn
Ψ

(
ab

πn

)
− 1

b
lnn,

(b)

∞̂

0

sh2 px · lnx

sh2 bx
dx = −πm

2bn
ctg

πm

n
· ln

πn

b

+ mπ

bn

n−1∑
l=1

sin
2πml

n
· lnΓ

(
l

n

)
− 1

2b
ln

(
2b

π
sin

mπ

n

)
− γ

2b

(c)

∞̂

0

chpx · ln(x2 + 1)

sh2 bx
dx = − π

b2
− πm

bn
ctg

πm

2n
· ln

2πn

b
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+ 2mπ

bn

2n−1∑
l=1

sin
πml

n
· lnΓ

(
l

2n
+ b

2πn

)

− 1

bn

2n−1∑
l=1

cos
πml

n
· Ψ
(

l

2n
+ b

2πn

)
− 1

bn
Ψ

(
b

2πn

)

where m < n in exercises (a) an (b), and m < 2n in exercise (c). For continuous and
complex values of p, see no. 67.

Hint: For exercise (a), after having proved that

∞̂

0

sh2 αx

sh2 x
dx = 1

2
− απ

2
ctgαπ, |Reα| < 1,

use a similar procedure as described in exercise no. 3. When evaluating residues, do

not forget that function
sh2 mz

sh2 nz
has removable singularities at z = 0, z = πi, z =

2πi and poles of the second order at z = iπl/n, l = 1,2,3, . . . , n − 1, n + 1, . . . ,

2n−1. At the final stage, split the sum over l = 1,2, . . . ,2n−1 in two sums of equal
lengths (over l = 0,1,2, . . . , n − 1 and over l = n,n + 1, n + 2, . . . ,2n − 1), then,
use duplication formulas for both Γ - and Ψ -functions, and finally, employ the Gauss’
multiplication theorem for the Ψ -function

Ψ (nz) = lnn + 1

n

n−1∑
l=0

Ψ

(
z + l

n

)
, z ∈ C, n ∈N.

Result (b) is obtained from (a) by an appropriate limiting procedure. In its final form
it appears after this elegant simplification

n−1∑
l=1

cos
2πml

n
· Ψ
(

l

n

)
= n ln

(
2 sin

mπ

n

)
+ γ, m = 1,2, . . . , n − 1. (48)

Formula (c) may be got from an intermediate formula obtained when deriving for-
mula (a) and with the help of no. 10a.

12* In precedent exercises we saw that the evaluation of certain logarithmic integrals
by the contour integration method may lead to the Γ -function of a complex argument.
By supposing that parameters α, β and ϑ are real and a � 0, show that integrals

(a)

∞̂

0

ln(x2 + a2)

chx + ϑ
dx, (b)

∞̂

0

ln(x2 + a2)

ch2 x + α
dx,

(c)

∞̂

0

ln(x2 + a2)

sh2 x + β
dx
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will lead to the Γ -function of a real argument (if using the proposed contour integra-
tion method) only if

(a)

{−1 < ϑ � 1, a �= 1,

−1 � ϑ � 1, a = 1,
(b)

{−1 < α � 0, a �= 1,

−1 � α � 0, a = 1,

(c)

{
0 < β � 1, a �= 1,

0 � β � 1, a = 1

respectively. Note that such integrals can be also calculated by using expansions in
geometric series (we employed such a method in exercises no. 18–21). By the way,
Malmsten et al. in [40] and [41] evaluated only such a kind of integral.

13* By making use of the contour integration method show that for any a � 0, Reb >

0,

(a)

∞̂

0

ln(x2 + a2)

ch3 bx
dx = π

b

{
lnΓ

(
3

4
+ ab

2π

)
− lnΓ

(
1

4
+ ab

2π

)}
+ π

2b
ln

2π

b

+ 1

4πb

{
Ψ1

(
3

4
+ ab

2π

)
− Ψ1

(
1

4
+ ab

2π

)}
,

(b)

∞̂

0

chpx · ln(x2 + a2)

ch3 bx
dx = π(n2 − m2)

2bn2
sec

mπ

2n
· ln

2πn

b

− (n2 − m2)π

bn2

2n−1∑
l=0

(−1)l cos
(2l + 1)mπ

2n
· lnΓ

(
2l + 1

4n
+ ab

2πn

)

+ m

bn2

2n−1∑
l=0

(−1)l sin
(2l + 1)mπ

2n
· Ψ
(

2l + 1

4n
+ ab

2πn

)

− 1

4bπn2

2n−1∑
l=0

(−1)l cos
(2l + 1)mπ

2n
· Ψ1

(
2l + 1

4n
+ ab

2πn

)

(c)

∞̂

0

sh3 px · ln(x2 + a2)

sh3 bx
dx = π

b
·

3m2

n2
− tg2 mπ

2n

1 − 3 tg2 mπ

2n

· tg
mπ

2n
· ln

2πn

b

+ π

b

2n−1∑
l=1

(−1)l sin3 mπl

n
· lnΓ

(
l

2n
+ ab

2πn

)

+ 3πm2

bn2

2n−1∑
l=1

(−1)l sin
mπl

n
·
(

3 cos2 mπl

n
− 1

)
· lnΓ

(
l

2n
+ ab

2πn

)
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+ 3m

bn2

2n−1∑
l=1

(−1)l sin2 mπl

n
· cos

mπl

n
· Ψ
(

l

2n
+ ab

2πn

)

+ 1

4bπn2

2n−1∑
l=1

(−1)l sin3 mπl

n
· Ψ1

(
l

2n
+ ab

2πn

)

where p = bm/n, numbers m and n being positive integers such that m < 3n in (b)
and m < n in (c).

Hint: For exercise (b): use the procedure described in the hint of exercise no. 3. For
the evaluation of the auxiliary integral JR , consider

‰

0�Im z�π

eαz

ch3 z
dz, and then, show that

∞̂

0

chαx

ch3 x
dx = π(1 − α2)

4
· sec

απ

2
, |Reα| < 3.

As regards exercise (c), the procedure is very similar. The evaluation of the integral
JR may be done with the help of

p.v.

‰

0�Im z�π

eaz

sh3 z
dz, |Rea| < 3, which yields

∞̂

0

sh3 αx

sh3 x
dx = π

2
· 3α2 − tg2 απ

2

1 − 3 tg2 απ
2

· tg
απ

2
, |Reα| < 1.

14* Prove by the contour integration method that for any a � 0 and Reb > 0,

(a)

∞̂

0

ln(x2 + a2)

ch4 bx
dx = 4

3b

{
ln

π

b
+ Ψ

(
1

2
+ ab

π

)}
+ 1

3π2b
Ψ2

(
1

2
+ ab

π

)
,

(b)

∞̂

0

(1 − chbx)2 ln(x2 + a2)

sh4 bx
dx = 2

3b

{
ln

2π

b
+ Ψ

(
1

2
+ ab

2π

)}

+ 1

6π2b
Ψ2

(
1

2
+ ab

2π

)
,

(c)

∞̂

0

chpx · ln(x2 + a2)

ch4 bx
dx = (4n2 − m2)mπ

6bn3
csc

mπ

2n
· ln

2πn

b
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− (4n2 − m2)mπ

3bn3

2n−1∑
l=0

sin
(2l + 1)mπ

2n
· lnΓ

(
2l + 1

4n
+ ab

2πn

)

+ 4n2 − 3m2

6bn3

2n−1∑
l=0

cos
(2l + 1)mπ

2n
· Ψ
(

2l + 1

4n
+ ab

2πn

)

− m

4bπn3

2n−1∑
l=0

sin
(2l + 1)mπ

2n
· Ψ1

(
2l + 1

4n
+ ab

2πn

)

+ 1

24bπ2n3

2n−1∑
l=0

cos
(2l + 1)mπ

2n
· Ψ2

(
2l + 1

4n
+ ab

2πn

)

where p = bm/n, numbers m and n being positive integers such that m < 4n.

Hint: For exercise (c): proceed similarly to exercise no. 13c. As regards the integral
JR , consider

‰

0�Im z�π

eαz

ch4 z
dz in order to prove that

∞̂

0

chαx

ch4 x
dx = απ(4 − α2)

12
· csc

απ

2
, |Reα| < 4.

15* Show by the contour integration technique that

∞̂

0

ln(x2 + a2)

ch5 bx
dx = 3π

4b

{
lnΓ

(
3

4
+ ab

2π

)
− lnΓ

(
1

4
+ ab

2π

)}
+ 3π

8b
ln

2π

b

+ 5

24πb

{
Ψ1

(
3

4
+ ab

2π

)
− Ψ1

(
1

4
+ ab

2π

)}

+ 1

192π3b

{
Ψ3

(
3

4
+ ab

2π

)
− Ψ3

(
1

4
+ ab

2π

)}
,

provided that a � 0 and Reb > 0.

16* Prove that

∞̂

0

ln(x2 + a2)

ch6 bx
dx = 16

15b

{
ln

π

b
+ Ψ

(
1

2
+ ab

π

)}
+ 1

3π2b
Ψ2

(
1

2
+ ab

π

)

+ 1

60π4b
Ψ4

(
1

2
+ ab

π

)
,

provided that a � 0 and Reb > 0.
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17* Show that for a � 0 and Reb > 0

(a)

∞̂

0

ln(x2 + a2)

chn bx
dx = πAn

b

{
lnΓ

(
3

4
+ ab

2π

)
− lnΓ

(
1

4
+ ab

2π

)
+ 1

2
ln

2π

b

}

+ 1

b

1
2 (n−1)∑

l=1

Bn,l

π2l−1

{
Ψ2l−1

(
3

4
+ ab

2π

)
− Ψ2l−1

(
1

4
+ ab

2π

)}

for odd n, and

(b)

∞̂

0

ln(x2 + a2)

chn bx
dx = An

b

{
ln

π

b
+ Ψ

(
1

2
+ ab

π

)}
+ 1

b

1
2 n−1∑
l=1

Bn,l

π2l
Ψ2l

(
1

2
+ ab

π

)

for even n, An and Bn,l being some rational coefficients. After some effort, one can
obtain their numeric values for any positive integer n. Table 1 gives these coeffi-
cients for n up to 20. Curiously enough, An for odd n are equal to the coefficients

in the Maclaurin expansion of 2(1 − x)− 1
2 , while A−1

n for even n are equal to the

coefficients in the Maclaurin expansion of 1
2 (1 − x)− 3

2 .

4.1.2 Further results obtained by a combination of various methods

18* By using geometric series expansions and term-by-term integration, prove

(a)

∞̂

0

xa lnx

ebx − 1
dx = Γ (a + 1)

ba+1

{
Ψ (a + 1)ζ(a + 1) + ζ ′(a + 1) − ζ(a + 1) lnb

}
,

Rea > 0,

(b)

∞̂

0

xa lnx

ebx + 1
dx = (1 − 2−a)Γ (a + 1)

ba+1

{
Ψ (a + 1)ζ(a + 1) + ln 2

2a − 1
ζ(a + 1)

+ ζ ′(a + 1) − ζ(a + 1) lnb

}
, Rea > −1, a �= 0,

(c)

∞̂

0

lnx

ebx + 1
dx = − (ln 2 + 2 lnb) ln 2

2b
,

(d)

∞̂

0

ln2 x

ebx + 1
dx = ln 2

b

{
−2γ1 − γ 2 + 1

3
ln2 2 + ln 2 lnb + ln2 b + π2

6

}
,
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(e)

∞̂

0

xa lnx

shbx
dx = (2 − 2−a)Γ (a + 1)

ba+1

{
Ψ (a + 1)ζ(a + 1) + ln 2

2a+1 − 1
ζ(a + 1)

+ ζ ′(a + 1) − ζ(a + 1) lnb

}
, Rea > 0,

(f)

∞̂

0

xa lnx

chbx
dx = Γ (a + 1)

22aba+1

{[
Ψ (a + 1) − ln 4b

]
ζ

(
a + 1,

1

4

)
+ ζ ′

(
a + 1,

1

4

)

− 2a
(
2a+2 − 1

)
ln 2 · ζ(a + 1) − 2a

(
2a+1 − 1

){
ζ ′(a + 1)

+ [Ψ (a + 1) − ln 4b
]
ζ(a + 1)

}}
, Rea > −1, a �= 0,

(g)

∞̂

0

lnx

chbx
dx = 1

b

{
γ1 − γ1

(
1

4

)
− 3γ ln 2 − 7

2
ln2 2 − πγ

2
− π

2
ln 4b

}
,

(h)

∞̂

0

ln2 x

chbx
dx

= 1

b

{
−γ2 + γ2

(
1

4

)
+ 2γ1 ln 2 + 12γ ln2 2 + 9 ln3 2 + 2γ γ1

(
1

4

)

− 2γ γ1 + 6γ 2 ln 2 + π3

12
+ 2γ1

(
1

4

)
ln 4b − 2γ1 lnb + 6γ ln 2 lnb

+ 7 ln2 2 lnb + πγ 2

2
+ 2π ln2 2 + π

2
ln2 b + πγ ln 4b + 2π ln 2 lnb

}
,

which hold for any b > 0. Integrals containing higher powers of the logarithm in the
numerator27 may be easily evaluated by calculating the derivative with respect to a

of the corresponding right parts [e.g., results (d) and (h) were obtained in this way].
However, the derivation is usually long and quite tedious. As regards non-integers
powers of logarithm in the numerator, calculation of such integrals may be sometimes
carried out by other methods; for example, Malmsten [41] treated similar integrals by
a simple change of variable.

Nota bene: We have not found formulas (a), (b), (d)–(h) in Gradshteyn and Ryzhik’s
tables [28], neither in Prudnikov et al.’s [53] tables. However, these results are not
very complicated to derive, so, probably, they were presented elsewhere before.
Solution: all demonstrations are based on the summation of certain geometric series
which can be integrated term-by-term. For instance, in exercise d), which is perhaps
the most complicated, one should first represent ch−1x in the following form:

1

chx
= 2

∞∑
n=0

(−1)ne−(2n+1)x, Rex > 0.

27Integer powers only.
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The latter series, being uniformly convergent, can be integrated term-by-term

∞̂

0

xa

chbx
dx = 2

∞∑
n=0

(−1)n

∞̂

0

xae−(2n+1)bx dx

= 2Γ (a + 1)

ba+1

∞∑
n=0

(−1)n

(2n + 1)a+1
= Γ (a + 1)

2aba+1
η

(
a + 1,

1

2

)
,

Rea > −1, b > 0. By recalling that η(s, v) can be reduced to ζ(s, v), see (4), and in
view of the fact that ζ

(
s, 1

2

)= (2s − 1)ζ(s), the above formula reduces to

∞̂

0

xa

chbx
dx = Γ (a + 1)

22aba+1

{
ζ

(
a + 1,

1

4

)
− 2a

(
2a+1 − 1

)
ζ(a + 1)

}
,

Rea > −1, b > 0. Differentiating once/twice the latter expression with respect to a,
and then letting a → 0, yields formulas (g)/(h) respectively. For more information
about the relationship between the Hurwitz ζ -function and the Stieltjes constants, see
exercises no. 63–64.

19* By using results of the previous exercise, show that

(a)
∞∑

n=1

(−1)n lnbn

n
= (γ − lnb) ln 2 − 1

2
ln2 2, b > 0,

(b)
∞∑

n=1

(−1)n−1 ln(2n − 1)

2n − 1
= π lnΓ

(
1

4

)
− π

2
ln 2 − 3π

4
lnπ − πγ

4
.

Hint: For (a): consider no. 18-c and set b = 1. Expand ch−1x as indicated in the hint
of no. 18, and then interchange the integration and summation. Proceed similarly for
series (b) and recall that integral no. 18-g is also the simplest Malsmten’s integral (1).

Nota bene: The logarithmic series from exercise a) is quite well known and can be
found in many sources, e.g. in [28, no. 4.325-1] or in [53, vol. I, p. 746, no. 5.5.1-
3]. Series (b) was derived by Malmsten in [41, unnumbered equation on the pp. 20
and 26] and also appears in [53, vol. I, p. 747, no. 5.5.1-6] in the form containing
Malmsten’s integral (1).

20* Proceeding as above, prove that for any b > 0

(a)

∞̂

0

xa lnx

chbx + cosϕ
dx = 2Γ (a + 1)

ba+1 sinϕ

∞∑
n=1

(−1)n−1 Ψ (a + 1) − lnbn

na+1
sinϕn,

a > −1, −π < ϕ < π,
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(b)
∞∑

n=1

(−1)n
lnbn · sinϕn

n
= π lnΓ

(
1

2
+ ϕ

2π

)
+ π

2
ln cos

ϕ

2
− π

2
lnπ

+ ϕ

2

[
γ + ln

2π

b

]
, −π < ϕ < π,

(c)
∞∑

n=1

lnbn · sinϕn

n
= π lnΓ

(
ϕ

2π

)
+ π

2
ln sin

ϕ

2
− π

2
lnπ

+ ϕ − π

2

[
γ + ln

2π

b

]
, 0 < ϕ < 2π,

(d)
∞∑

n=1

ln(2n − 1) · sin[(2n − 1)ϕ]
2n − 1

= π

2

[
lnΓ

(
ϕ

2π

)
− lnΓ

(
1

2
+ ϕ

2π

)]

− π

4

[
ln 2π + γ − ln tg

ϕ

2

]
, 0 < ϕ < π,

(e)
∞∑

n=1

(−1)n
ln(2n − 1) · sin[(2n − 1)ϕ]

2n − 1
= 1

4

{
Φ

(
ϕ − π

2

)
− Φ

(
ϕ + π

2

)}

+ γ

2
ln tg

[
ϕ

2
+ π

4

]
− π tgϕ

4

{
2 lnΓ

(
ϕ

2π
+ 1

4

)
− 2 lnΓ

(
ϕ

2π
+ 3

4

)

+ ln tg

[
ϕ

2
+ π

4

]
− ln 2π

}
, −π

2
< ϕ <

π

2
,

where Φ(ϕ) is defined in exercise no. 21.

Hint: Formula (b) may be obtained by comparing result (a) with that obtained pre-
viously in exercise no. 2. Expansion (c) may be obtained from (b) by a shifting ϕ.
The difference between (c) and (b) with parameter b = 1 yields (d). Analogously,
formula (e) may be deduced from no. 21-c.

Nota bene: Formulas (b) and (c), in a slightly different form, were previously derived
by Malmsten et al. [40, p. 62] and [41, p. 25, eqs. (64)–(65)]. They also appear in [53,
vol. I, p. 748] as no. 5.5.1-25 and 5.5.1-24 respectively; however, formula (b) appears
incorrectly in no. 5.5.1-25, and (c) in no. 5.5.1-24 contains an additional modulus
that must be removed. Once again, we regret that Prudnikov et al. [53] do not spec-
ify sources. As regards expansion (c), which actually represents the Fourier series
expansion for the logarithm of the Γ -function, this important result is attributed to
Ernst Eduard Kummer [39, p. 86], [71, p. 250], [9, vol. I, p. 23], albeit he obtained
this expression only in 1847 [35, p. 4], i.e. 5 years later after the publication of the
Malmsten et al.’s dissertation [40], see Fig. 2.28 Moreover, taking into account that

28Strictly speaking, Kummer’s result [35, p. 4] is obtained from the Malmsten et al.’s one [40, formula
(74), p. 62] by putting a = π(2x − 1).
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expansion no. 21-e was also derived by Malmsten et al. [40, p. 74], the authorship
of such a kind of series should without doubt be, attributed to Malmsten and not to
Kummer. As regards formulas (a), (d), and (e), they seem to be unpublished yet.

21* Analogous to the previous exercise, prove the following results related to sums
containing cosines and logarithms:

(a)
∞∑

n=1

(−1)n
lnbn · cosϕn

n
= (γ − lnb) ln

(
2 cos

ϕ

2

)
+ Φ(ϕ)

2

+ π ctgϕ

2

{
2 lnΓ

(
1

2
+ ϕ

2π

)
+ ln cos

ϕ

2
+ ϕ

π
ln 2π − lnπ

}

− π < ϕ < π

(b)
∞∑

n=1

lnbn · cosϕn

n
= (γ − lnb) ln

(
2 sin

ϕ

2

)
+ Φ(ϕ − π)

2

+ π ctgϕ

2

{
2 lnΓ

(
ϕ

2π

)
+ ln sin

ϕ

2
+ ϕ − π

π
ln 2π − lnπ

}

0 < ϕ < 2π,

(c)
∞∑

n=1

ln(2n − 1) · cos[(2n − 1)ϕ]
2n − 1

= γ

2
ln tg

ϕ

2
+ 1

4

{
Φ(ϕ − π) − Φ(ϕ)

}

+ π ctgϕ

4

{
2 lnΓ

(
ϕ

2π

)
− 2 lnΓ

(
1

2
+ ϕ

2π

)
+ ln tg

ϕ

2
− ln 2π

}

0 < ϕ < π,

(d)
∞∑

n=1

(−1)n
ln(2n − 1) · cos[(2n − 1)ϕ]

2n − 1
= π

4
(γ + 3 lnπ + 2 ln 2 − ln cosϕ)

− π

2
ln

[
Γ

(
1

4
+ ϕ

2π

)
Γ

(
1

4
− ϕ

2π

)]
, −π

2
< ϕ <

π

2

b > 0, and where we denoted by Φ(ϕ) the following improper integral:

Φ(ϕ) ≡
∞̂

0

e−x lnx

chx + cosϕ
dx = 2

∞̂

1

ln lnx

x(x2 + 2x cosϕ + 1)
dx, −π < ϕ < π.

Nota bene: Formula (d) was previously derived by Malmsten et al. [40, p. 74] and
[41, p. 39]29 and does not appear, to our knowledge, in other sources. As regards the
other sums, they do not appear in Gradshteyn and Ryzhik’s tables [28], neither in

29Malmsten originally wrote a/2 instead of ϕ.
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Prudnikov et al.’s tables [53] nor in other sources that we could found. The reader
may also remark that the integral Φ(ϕ) may be trivially expressed in terms of the
polylogarithm’s derivative. Although much less trivially, but it can be also expressed
in terms of the second-order derivatives of the Hurwitz ζ -function:

Φ(ϕ) = 2 ln 2π · ln

(
2 cos

ϕ

2

)
− π ctgϕ

{
2 lnΓ

(
1

2
+ ϕ

2π

)
+ ln cos

ϕ

2

+ ϕ

π
ln 2π − lnπ

}
+ ζ ′′

(
0,

1

2
+ ϕ

2π

)
+ ζ ′′

(
0,

1

2
− ϕ

2π

)
. (49)

This formula straightforwardly follows from the comparison of no. 21-a to no. 22-a.

22* Results in exercises no. 18–21 are obtained by means of geometric series. An-
other way to treat such problems consists is to use the Mittag–Leffler theorem and
similar expansions. By proceeding in this manner, prove

(a)
∞∑

n=1

(−1)n
lnn · cosϕn

n

= lnπ · ln cos
ϕ

2
− 1

2
ln2 2 + γ ln 2 +

∞̂

0

ch(ϕx/π) − 1

x shx
lnx dx

︸ ︷︷ ︸
Υ (ϕ)

= (γ + ln 2π) · ln

(
2 cos

ϕ

2

)
+ 1

2

{
ζ ′′
(

0,
1

2
+ ϕ

2π

)
+ ζ ′′

(
0,

1

2
− ϕ

2π

)}

= −1

2
ln2 2 + γ ln 2 + (γ + ln 2π) ln cos

ϕ

2
− 2Γ1

(
1

2

)
+ Γ1

(
1

2
+ ϕ

2π

)

+ Γ1

(
1

2
− ϕ

2π

)
, −π < ϕ < π,

(b)
∞∑

n=1

lnn · cosϕn

n
= lnπ · ln sin

ϕ

2
− 1

2
ln2 2 + γ ln 2 + Υ (ϕ − π)

= (γ + ln 2π) · ln

(
2 sin

ϕ

2

)
+ 1

2

{
ζ ′′
(

0,
ϕ

2π

)
+ ζ ′′

(
0,1 − ϕ

2π

)}
,

0 < ϕ < 2π,

(c)
∞∑

n=1

ln(2n − 1) · cos[(2n − 1)ϕ]
2n − 1

= 1

2
(γ + ln 2π) · ln tg

ϕ

2

+ 1

4

{
ζ ′′
(

0,
ϕ

2π

)
+ ζ ′′

(
0, 1 − ϕ

2π

)
− ζ ′′

(
0,

1

2
+ ϕ

2π

)
− ζ ′′

(
0,

1

2
− ϕ

2π

)}
,

0 < ϕ < π,
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(d)
∞∑

n=0

(−1)n
ln(2n + 1) · sin[(2n + 1)ϕ]

2n + 1

= 1

2
ln

π

2
· ln tg

[
π

4
− ϕ

2

]
+ 1

2

∞̂

0

sh(2ϕx/π)

x chx
lnx dx, −π

2
< ϕ <

π

2

where ζ ′′(s, v) stands for the second derivative of the Hurwitz ζ -function with respect
to s, and Γ1(x) stands for the antiderivative of the first generalized Stieltjes constant
γ1(x). Note that formulas (a)–(c) actually represent Fourier series expansions for the
sum of two second-order derivative of the Hurwitz ζ -function at s = 0 and have a
comparatively simple form. At the same time, they can be regarded as the reflection
formula for the second-order derivative of the Hurwitz ζ -function at s = 0.

Hint: For (a): by using a theorem from [23, no. 27.09], one can show that the follow-
ing expansion holds (see also [23, no. 27.10.1, p. 265] and [29, no. 641, p. 73])

shαz

sh z
= −2π

∞∑
n=1

(−1)n
n · sin(απn)

z2 + π2n2
, −1 < α < 1 (50)

and is valid in the entire complex plane except at points z = πin, n ∈ Z. Computing
the antiderivative of the above expansion with respect to α, and then bearing in mind
that

∞̂

0

lnx

x2 + π2n2
dx = lnπn

2n
, n > 0, (51)

as well as using the series from no. 19-c, yields the first part of the formula (that
containing the integral Υ (ϕ)). The second part of the formula (that containing Hur-
witz ζ -functions) is derived as follows. First, as in no. 18, write sh−1x as a sum of a
geometric series. Then, apply term-by-term integration30 and utilize the integral def-
inition of the Hurwitz ζ -function, see e.g. [9, vol. I, p. 25, Eq. 1.10(3)], [5, p. 251,
§12.3]. Proceeding in this manner yields

∞̂

0

xa(chbx − 1)

shx
dx = Γ (a + 1)

2a+1

{
ζ

(
a + 1,

1

2
+ b

2

)
+ ζ

(
a + 1,

1

2
− b

2

)

−2
(
2a+1 − 1

)
ζ(a + 1)

}
(52)

30The series being uniformly convergent.



Malmsten’s integrals and their evaluation by contour integration 71

a > −2, |Reb| < 1. Differentiating the latter expression with respect to a, and then,
using an appropriate limiting procedure, we obtain

∞̂

0

chbx − 1

x shx
lnx dx = 1

2

{
ζ ′′
(

0,
1

2
+ b

2

)
+ ζ ′′

(
0,

1

2
− b

2

)}
+ 3

2
ln2 2

+ ln 2 · lnπ + (γ + ln 2) ln cos
πb

2

|Reb| < 1. The second part of the formula in its final form is now straightforward.
In order to obtain the third variant of the formula (that containing two antiderivatives
of the first Stieltjes constants) consider again Υ (ϕ), which is also the antiderivative
of no. 63-a with respect to p at p = ϕ/π . The constant of integration is easily deter-
mined by putting ϕ = 0, which yields for the latter the value of −2Γ1(1/2). In order
to get result (b), write ϕ − π instead of ϕ in (a). For (d): it is sufficient to ascertain
that

chαz

ch z
= π

∞∑
n=0

(−1)n
(2n + 1) cos

[
(n + 1

2 )απ
]

z2 + (n + 1
2 )2π2

, −1 < α < 1,

which holds in the whole complex plane except at z = (n+ 1
2

)
πi, n ∈ Z. If necessary,

results (b)–(d) may be also written in terms of the antiderivatives of the first Stieltjes
constants.

23* By using a similar method, prove that for any a � 0 and −π < ϕ < π , we have

(a)
∞∑

n=1

(−1)n
ln(n + a) · [cosϕn − 1]

n

= lnπ · ln cos
ϕ

2
+ 1

2

∞̂

0

ch(ϕx/π) − 1

x shx
ln
(
x2 + π2a2)dx,

(b)
∞∑

n=0

(−1)n
ln(n + a) · sin

[
(n + 1

2 )ϕ
]

2n + 1

= 1

2
lnπ · ln tg

[
π

4
− ϕ

4

]
+ 1

4

∞̂

0

sh(2ϕx/π)

x chx
ln

[
x2 + π2(a − 1

2

)2]
dx.

Prove that if ϕ is a rational part of π , i.e. ϕ ≡ πm/n where m is integer and n is
positive integer, then for any a ∈C (except points specified below) and k = 2,3,4, . . .

(c)
∞∑
l=1

sinϕl

l + a
= − 1

2n

2n−1∑
l=1

sinϕl · Ψ
(

l + a

2n

)
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(d)
∞∑
l=1

sinϕl

(l + a)k
= (−1)k

(2n)k(k − 1)!
2n−1∑
l=1

sinϕl · Ψk−1

(
l + a

2n

)

(e)
∞∑
l=0

cosϕl

l + a
= − 1

2n

2n−1∑
l=0

cosϕl · Ψ
(

l + a

2n

)

(f)
∞∑
l=0

cosϕl

(l + a)k
= (−1)k

(2n)k(k − 1)!
2n−1∑
l=0

cosϕl · Ψk−1

(
l + a

2n

)

where in (c)–(d) a �= −1,−2,−3, . . ., and in (e)–(f) a �= 0,−1,−2, . . .

Nota bene: Trigonometric series have been the subject of numerous studies since the
18th century; it is therefore very difficult to know if formulas (c)–(f) represent some
new contribution or not. We, however, remark that no closed-form expressions for
these series are given in Prudnikov et al.’s tables [53], nor in Gradshteyn and Ryzhik’s
tables [28].31

Hint: For (a) and (b), demonstrations are similar to no. 22, except that integral (51)
is replaced with

∞̂

0

ln(x2 + a2)

x2 + ε2
dx = π

ε
ln(a + ε), a > 0, ε > 0,

see, e.g., the solution for [59, no. 22, p. 187]. Result (c) is obtained by applying ∂2

∂ϕ∂a
to (a). After the differentiation, if ϕ is a rational part of π , then the integral in the right
part of (a) coincide with the derivative of Malmsten’s integral no. 3-(a) with respect
to a; this leads to the Ψ -function in the right part. Shifting ϕ by π yields the series (c)
in its final form. Result (d) is obtained from (c) by calculating its (k − 1)th derivative
with respect to a. In like manner, we obtain (e) from (b), but result (c) should be also
used. Finally, extensions to a ∈C follow from the principle of analytic continuation.

24 From the results obtained in no. 22 and no. 19, prove that

(a) ζ ′′
(

0,
1

2

)
= −3

2
ln2 2 − lnπ ln 2,

(b)

∞̂

0

ln(x2 + 1/4) · arctg(2x)

e2πx − 1
dx = 3

4
ln2 2 + (lnπ − 1) ln 2

2
− 1

2
.

Nota bene: Mark Coffey [18] suggested that it may be possible to obtain integral (b)
by contour integration. Regrettably, he did not indicate how to circumvent the prob-

31Prudnikov et al.’ tables provides, however, several formulas for the series (c) and (e) when a is rational
[53, vol. I, § 5.4.3].
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lem of branch points that have both logarithm and arctangent (we pointed out the
importance of this problem in Sect. 3.1).

Hint: For (a): put ϕ = 0 in no. 22-a and compare to no. 19-a. Another way to prove
the same result is to recall that ζ

(
s, 1

2

) = (2s − 1)ζ(s), and then, to use these well-
known results ζ(0) = − 1

2 and ζ ′(0) = − 1
2 ln 2π . For (b): compute the second deriva-

tive of the Hermite representation for the Hurwitz ζ -function with respect to s at
s = 0 and v = 1

2 , see (3).

25* By combining various methods, prove that if p is a rational part of b, i.e. p =
bm/n, where b is some parameter with positive real part, and numbers m and n are
positive integers such that m < n, then

(a)

∞̂

0

shpx · lnx

ebx − 1
dx = − π

2b
ctg

mπ

n
· ln

2πn

b
+ π

b

n−1∑
l=1

sin
2mπl

n
· lnΓ

(
l

n

)

− n

2bm

(
γ + ln

bm

n

)
,

(b)

∞̂

0

shpx · lnx

ebx + 1
dx = π

2b
csc

mπ

n
· ln

2πn

b

− π

b

n−1∑
l=0

sin
(2l + 1)mπ

n
· lnΓ

(
2l + 1

2n

)

+ n

2bm

(
γ + ln

bm

n

)
.

Hint: From these two well-known (at the time) integrals

∞̂

0

chax · sin rx

shπx
dx = sh r

2(ch r + cosa)
and

∞̂

0

e−ωx sin rx dx = r

r2 + ω2
,

Legendre [64, vol. II, p. 189] derived, by using elementary transformations the value
of the following integral32

∞̂

0

sin rx

e2πx − 1
dx = 1

4
cth

r

2
− 1

2r
, |Re r| < 2π, r �= 0.

32This integral was first evaluated by Poisson in 1813 in the famous work [51, pp. 214–220], see also [12,
p. 240]. The work [51] was later republished in several volumes of the Journal de l’École Polytechnique,
see namely [52].
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By the same line of reasoning, one can show that

shax

shbx
= − 2 shωx

e2bx − 1
+ e−ωx,

chax

chbx
= 2 shωx

e2bx + 1
+ e−ωx,

chax

shbx
= 2 chωx

e2bx − 1
+ e−ωx,

shax

chbx
= − 2 chωx

e2bx + 1
+ e−ωx,

where a ≡ b − ω. Accounting for these elementary formulas and using previously
obtained integrals in exercise no. 3, as well as bearing in mind that

∞̂

0

e−ωx lnx dx = −γ + lnω

ω
, Reω > 0,

we obtain both integrals (a) and (b). The final formulas are obtained by further sim-
plification with the help of the duplication formula for the Γ -function and with the
help of these results known from elementary analysis:

n−1∑
l=1

l · sin
(2l + 1)mπ

n
= −n

2
csc

mπ

n
,

n−1∑
l=1

l · sin
2mπl

n
= −n

2
ctg

mπ

n

for m = 1,2, . . . , n − 1.

Nota bene: The evaluation of
∞̂

0

chpx · lnx

ebx + 1
dx

requires the knowledge of the following integral
∞̂

0

shpx · lnx

chbx
dx.

The latter may be expressed by means of the first generalized Stieltjes constants, see
exercise no. 65.

26 By employing results obtained in exercise no. 25, prove that
∞̂

0

e−bx · thbx · lnx dx = −2π

b
lnΓ

(
1

4

)
+ π

2b
ln

4π3

b
+ γ + lnb

b
, Reb > 0.

Nota bene: alternatively, the same result may be derived by the series expansion
method. By recalling that ch−1x is the sum of a geometric progression, one may
easily show that

thx = 1 + 2
∞∑

n=1

(−1)ne−2nx, Rex > 0.



Malmsten’s integrals and their evaluation by contour integration 75

This expansion and the use of the result obtained in no. 19-d yield the above formula.

27 Show that

(a)

∞̂

0

e−x lnx

ex + 1
dx =

∞̂

1

ln lnx

x2(1 + x)
dx = 1

2
ln2 2 − γ,

(b)

∞̂

0

(chx − 1) lnx

e2x − 1
dx = 1

2

∞̂

0

e−x · th
x

2
· lnx dx

= 1

2

∞̂

1

(x − 1) ln lnx

x2(x + 1)
dx = 1

2

(
γ − ln2 2

)
.

4.2 Logarithmic integrals of ln ln-type in combination with polynomials

An appropriate change of variable applied to integrals treated in the preceding ex-
ercises allows one to evaluate many beautiful ln ln-integrals. Below we give several
examples of such integrals, but the given list is far from exhaustive.

28* Prove that

1ˆ

0

x2 − 3x + 1

1 + x2 + x4
ln ln

1

x
dx =

∞̂

1

x2 − 3x + 1

1 + x2 + x4
ln lnx dx = π ln 2

3
√

3
.

Hint: Use formulas (44) and (45).

29 By using formula (37) show that

(a)

1ˆ

0

x ln ln 1
x

1 + x4
dx =

∞̂

1

x ln lnx

1 + x4
dx = π

8

{
ln 2 + 3 lnπ − 4 lnΓ

(
1

4

)}
,

(b)

1ˆ

0

xn−1 ln ln 1
x

(1 + xn)2
dx =

∞̂

1

xn−1 ln lnx

(1 + xn)2
dx = 1

2n

(
−γ + ln

π

2n

)
,

(c)

1ˆ

0

x ln ln 1
x

1 + x2 + x4
dx =

∞̂

1

x ln lnx

1 + x2 + x4
dx

= π

12
√

3

{
6 ln 2 − 3 ln 3 + 8 lnπ − 12 lnΓ

(
1

3

)}
,

(d)

1ˆ

0

ln ln 1
x

1 + √
2x + x2

dx =
∞̂

1

ln lnx

1 + √
2x + x2

dx
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= π

4
√

2

{
5 ln 2π − 2 ln(2 + √

2) − 8 lnΓ

(
3

8

)}
,

(e)

1ˆ

0

ln ln 1
x

1 − √
2x + x2

dx =
∞̂

1

ln lnx

1 − √
2x + x2

dx

= π

4
√

2

{
7 ln 2π − 2 ln(2 − √

2) − 8 lnΓ

(
1

8

)}
,

(f)

1ˆ

0

x ln ln 1
x

1 + √
2x2 + x4

dx =
∞̂

1

x ln lnx

1 + √
2x2 + x4

dx

= π

8
√

2

{
4 ln 2 − 2 ln(2 + √

2) + 5 lnπ − 8 lnΓ

(
3

8

)}
,

(g)

1ˆ

0

x ln ln 1
x

1 − √
2x2 + x4

dx =
∞̂

1

x ln lnx

1 − √
2x2 + x4

dx

= π

8
√

2

{
4 ln 2 − 2 ln(2 − √

2) + 7 lnπ − 8 lnΓ

(
1

8

)}
,

(h)

1ˆ

0

ln ln 1
x

1 + 2x cosϕ + x2
dx =

∞̂

1

ln lnx

1 + 2x cosϕ + x2
dx

= π

2 sinϕ
ln

⎧⎨
⎩

(2π)
ϕ
π Γ

(
1
2 + ϕ

2π

)

Γ
(

1
2 − ϕ

2π

)
⎫⎬
⎭ , |Reϕ| < π.

Show that the function Q(x) in each of these integrals satisfies the functional rela-
tionship Q(x−1) = x2Q(x).

Nota bene: Many of the above integrals for bounds [0,1] were already treated by dif-
ferent authors. However, none of them noticed that they can be equally taken from 1
to ∞ and that they all obey Q(x−1) = x2Q(x). In particular, result (a), in a slightly
different form, as well as result (b) were presented by Adamchik [2] (it should be
noted however that both integrals may be easily obtained from Malmsten’s integrals
(1) and (46), respectively, by means of a simple change of variable). Result (c) is a
particular case of Malmsten’s integral (17) for n = 3 (see also exercise no. 32 below),
and it was also independently evaluated in [44]. Integral (h) for real ϕ was evaluated
by Malmsten [41, p. 24] and also appears in [61, Table 190-9], in [62, Table 147-
9] and in [28, no. 4.325-7] (see also exercise no. 2 above). Integrals (d) and (e) are
particular cases of (h) with ϕ = π/4 and ϕ = 3π/4 respectively. Integrals (f) and (g)
may be deduced from integrals (d) and (e) respectively by making a suitable change
of variable; integral (g) was also independently evaluated in [44] (however the au-
thors did not simplify their result). By the way, formula (h) may provide many other
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useful results. For instance, the result given in the Proposition 7.5 [44] may be ob-
tained directly from h) by differentiating it with respect to ϕ; formulas obtained in
examples 7.8–7.10 [44] follows immediately from such a derivative.

30* In [67, p. 314] Vardi, after having considered three basic Malmsten’s formulas
(1) and (2a), (2b), supposed that the multiplicative inverse of the argument of the
Γ -function is the degree in which the poles of the integrand are the roots of unity.33

Prove that such an assumption is not generally true for the integrals of the form

1ˆ

0

ln ln 1
x

ax2 + bx + c
dx (53)

where a, b, c are arbitrary real coefficients. Determine exact conditions under which
this assumption is true.

Proof From condition (27), which implies that Q(x−1) = x2Q(x) [see Sect. 3.2], it
follows that the above integral may be expressed in terms of the Γ -function if a = c.
Consider the case b ∈ (−2a,+2a). As shown in no. 12-a, in such a case integral (53)
may be written by means of the Γ -function of a real argument. Since −1 � cosϕ �
+1 for any 0 � ϕ � 2π , the integral in question may be always written in the form
analogous to no. 29-h, namely:

1ˆ

0

ln ln 1
x

1 − 2x cosϕ + x2
dx =

∞̂

1

ln lnx

1 − 2x cosϕ + x2
dx

= − π

2 sinϕ

{
ϕ − π

π
ln 2π − lnπ + ln sin

ϕ

2
+ 2 lnΓ

(
ϕ

2π

)}

where ϕ ∈ (0,2π). Accordingly to Vardi’s statement, the zeros of the denomina-

tor x1,2 must be the (2π/ϕ)th roots of 1, i.e., x
2π
ϕ

1,2 = 1. Computing the roots of

the quadratic polynomial in the denominator yields x1,2 = e±iϕ . Hence x
2π
ϕ

1,2 =
e±2πi = 1, and thus, Vardi’s hypothesis is true. Consider now the case b /∈
(−2a,+2a). This case, in virtue of what was established in no. 12-a, leads to the
Γ -function of a complex argument (integrals no. 4, 5, 7-a, 8-a and 9-a are typical

33In fact, Vardi was not very clear in defining his idea of the relationship between the poles of the in-
tegrand and the argument of the Γ -function with the help of which Malmsten’s integrals are expressed.
The statement “in Eq. (2a) the number 3 plays the ‘key role’ and in Eq. (2b) 6 is the ‘magic number”’
[67, p. 313] may be also interpreted in the sense that the least possible integer in the denominator of the
argument of the Γ -function (and not the inverse multiplicative of the argument of the Γ -function) should
be equal to the degree in which the poles of the integrand are the roots of unity. However, the fallacy of
this statement is also evident from the proof given above.
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examples of such a case). More precisely, integral (53) reduces to34

1ˆ

0

ln ln 1
x

1 + 2x ch t + x2
dx =

∞̂

1

ln lnx

1 + 2x ch t + x2
dx

= − πi

2 sh t

{
it

π
ln 2π − lnπ + ln ch

t

2
+ 2 lnΓ

(
1

2
+ it

2π

)}

with t ∈ (0,∞). By Vieta’s formulas, we easily find the roots of the quadratic poly-
nomial in the denominator: x1,2 = −e∓t . Are these values the pth roots of 1? where

p ≡ 1
1
2 + it

2π

= 2π2

π2 + t2
− i

2πt

π2 + t2
.

The straightforward verification shows that only x
p

1 = 1, while x
p

2 �= 1, and thus,
Vardi’s assumption is false. Now, consider the case b = 2a. In this case, the quadratic
polynomial ax2 + bx + c takes the form a(x + 1)2, and hence (53) reduces to Malm-
sten’s integral (46), which is given in terms of the Euler’s constant γ and not of the
logarithm of the Γ -function. However, Vardi remarked that his assumption remains
applicable only if ax2 + bx + c is irreducible, which is obviously not the case if
b = 2a. Finally, when b = −2a integral (53) does not converge.

As regards the case a �= c, the general procedure for the evaluation of (53) is not
yet well known, but in many cases such integrals have higher transcendence than
the Γ -function (see, e.g. the last paragraph in Sect. 3.2). Consequently, Vardi’s as-
sumption for integral (53) remains true only if coefficients a, b, c are chosen so that
a = c and −2a < b < +2a, where we may suppose, without loss of generality, that
a > 0. �

31* With the help of (37) show that

1ˆ

0

xα−1 ln ln 1
x

1 + x2α
dx =

∞̂

1

xα−1 ln lnx

1 + x2α
dx = π

4α

{
ln

4π3

α
− 4 lnΓ

(
1

4

)}
, α > 0.

Note that case α = 1 corresponds to the simplest Malmsten’s integral (1); case α = 2
gives the result obtained by Adamchik (see the previous exercise). Cases for other α

(not necessarily integer) seem to be new (at least, in this form). The above result may
be therefore regarded as a generalization of Malmsten’s integral (1).

32* Show that if

1ˆ

0

xδ ln ln 1
x

1 ± xα + xβ
dx =

∞̂

1

xδ ln lnx

1 ± xα + xβ
dx,

34To assure the convergence, we should take in the denominator 1 + 2x ch t + x2 rather than 1 − 2x ch t +
x2.
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then, coefficients α, β and δ should be chosen so that β = 2α and δ = α − 1. Prove
then that

1ˆ

0

xα−1 ln ln 1
x

1 + xα + x2α
dx =

∞̂

1

xα−1 ln lnx

1 + xα + x2α
dx = 2π

3α
√

3

{
ln

4π2

4
√

27α2
− 3 lnΓ

(
1

3

)}

1ˆ

0

xα−1 ln ln 1
x

1 − xα + x2α
dx =

∞̂

1

xα−1 ln lnx

1 − xα + x2α
dx = 4π

3α
√

3

{
ln

4π2

4
√

54α2
− 3 lnΓ

(
1

3

)}

where α > 0. Note that these integrals for α = 1 give Malmsten’s integrals (2a),
(2b) [or (44) and (45)], respectively. Hence, the above formulas may be seen as a
generalization of (2a), (2b). Moreover, in the case α = 2, these integrals become
Malmsten’s integrals (17) and (18) with n = 3, respectively.

Hint: Establish the condition under which Q(x−1) = x2Q(x). Then, make a change
of variable x = et/α .

33 Show that the function Q(x) of Malmsten’s integral (17) satisfies the functional
relationship Q(x−1) = x2Q(x). Show that so do functions

xm−1 − x−m−1

xn − x−n
and

xm−1 + x−m−1

xn + x−n

where n and m are natural numbers.

Nota bene: Integrals containing such functions Q(x) were evaluated by Malmsten
in [41, pp. 7, 29].

34 Prove that for any positive α

(a)

1ˆ

0

x
αn
2 −1 ln ln 1

x

1 + xα + x2α + · · · + xnα
dx =

∞̂

1

x
αn
2 −1 ln lnx

1 + xα + x2α + · · · + xnα
dx

= 2

α

{
Yn+1 − π

2n + 2
tg

π

2n + 2
· ln

α

2

}
, n = 1,2,3, . . . ,

(b)

1ˆ

0

x
αn
2 −1 ln ln 1

x

1 − xα + x2α − · · · + xnα
dx =

∞̂

1

x
αn
2 −1 ln lnx

1 − xα + x2α − · · · + xnα
dx

= 2

α

{
Xn+1 − π

2n + 2
sec

π

2n + 2
· ln

α

2

}
, n = 2,4,6, . . . ,

where Yn and Xn are Malmsten’s integrals (17) and (18), respectively.
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Hint: For exercise (a), show first that

1ˆ

0

xn−2

1 + x2 + x4 + · · · + x2n−2
dx =

∞̂

1

xn−2

1 + x2 + x4 + · · · + x2n−2
dx = π

2n
tg

π

2n

As regards exercise (b), follow the same line of reasoning.

35* A family of logarithmic integrals In

In =
1ˆ

0

xn−1 ln ln 1
x

(1 + x2)n
dx =

∞̂

1

xn−1 ln lnx

(1 + x2)n
dx = 1

2n

∞̂

0

lnx

chn x
dx,

n = 1,2,3, . . ., generates special mathematical constants in the following way:

I1 = π

2
ln 2 + 3π

4
lnπ − π lnΓ

(
1

4

)
,

I2 = −1

2
ln 2 + 1

4
lnπ − γ

4
,

I3 = π

16
ln 2 + 3π

32
lnπ − G

4π
− π

8
lnΓ

(
1

4

)
,

I4 =

⎧⎪⎪⎨
⎪⎪⎩

− 1

12
ln 2 + 1

24
lnπ − γ

24
− 7 ζ(3)

48π2
, [ζ -form],

− 1

12
ln 2 + 1

24
lnπ − γ

24
+ 1

96π2
Ψ2

(
1

2

)
, [Ψ -form],

I5 = 3π

256
ln 2 + 9π

512
lnπ + π

768
− 5 G

96π
− 3π

128
lnΓ

(
1

4

)
− 1

6144π3
Ψ3

(
1

4

)
,

I6 =

⎧⎪⎪⎨
⎪⎪⎩

− 1

60
ln 2 + 1

120
lnπ − γ

120
− 7 ζ(3)

192π2
− 31 ζ(5)

320π4
, [ζ -form],

− 1

60
ln 2 + 1

120
lnπ − γ

120
+ 1

384π2
Ψ2

(
1

2

)
+ 1

7680π4
Ψ4

(
1

2

)
, [Ψ -form],

I7 = 5π

2048
ln 2 + 15π

4096
lnπ + 43π

92160

− 259 G
23040π

− 5π

1024
lnΓ

(
1

4

)
− 7

147456π3
Ψ3

(
1

4

)
− 1

2949120π5
Ψ5

(
1

4

)
,
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I8 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

280
ln 2 + 1

560
lnπ − γ

560
− 49 ζ(3)

5760π2
− 31 ζ(5)

960π4
− 127 ζ(7)

1792π6
,

[ζ -form],

− 1

280
ln 2 + 1

560
lnπ − γ

560
+ 7

11520π2
Ψ2

(
1

2

)
+ 1

23040π4
Ψ4

(
1

2

)

+ 1

1290240π6
Ψ6

(
1

2

)
, [Ψ -form],

Prove the results above by the contour integration technique.

Nota bene: The particular case n = 1 is the simplest Malmsten’s integral (1); case
n = 2 is also known, see e.g., [62, Table 257-4], [28, no. 4.371-3], [44]. The result
for the case n = 3 can be found in [44]. Integral I4 was also treated in [44], but
the presented formula differs from the above ones and contains the derivative of the
Riemann ζ -function. As regards integrals with higher n, they seem never to have been
evaluated before in the literature.

36* By using results of the previous exercise, show that following mathematical con-
stants may be defined by ln ln-integrals:

(a) G = π

2

1ˆ

0

(x4 − 6x2 + 1) ln ln 1
x

(1 + x2)3
dx = π

2

∞̂

1

(x4 − 6x2 + 1) ln lnx

(1 + x2)3
dx

(b) ζ(3) = 8π2

7

1ˆ

0

x(x4 − 4x2 + 1) ln ln 1
x

(1 + x2)4
dx = 8π2

7

∞̂

1

x(x4 − 4x2 + 1) ln lnx

(1 + x2)4
dx

The first result was already presented by Adamchik [2], while the second one seems
to be new. Similar integral definitions for the Euler’s constant γ and for lnΓ (1/4)

are straightforward from the previous exercise.

37* By using results of exercise no. 4, show that

1

2 sh 1

+∞ˆ

−∞

ln |x|
shx ± sh 1

dx = ∓
∞̂

0

lnx

sh2 x − sh2 1
dx

= ∓4

∞̂

1

x ln lnx

x4 − 2x2 ch 2 + 1
dx = ∓4

1ˆ

0

x ln ln 1
x

x4 − 2x2 ch 2 + 1
dx

= ±
[

2π

sh 2
Im

{
lnΓ

(
i

2π

)
− lnΓ

(
1

2
− i

2π

)}
+ π2

2 sh 2
+ 2 ln 2π

sh 2

]
.
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38* Prove that for any t > 0

∞̂

1

x(ln lnx − ln t)

x4 − 2x2 ch 2t + 1
dx =

1ˆ

0

x
(
ln ln 1

x
− ln t

)
x4 − 2x2 ch 2t + 1

dx

= − π

2 sh 2t
Im

{
lnΓ

(
it

2π

)
− lnΓ

(
1

2
− it

2π

)}
− π2

8 sh 2t
+ t

2 sh 2t
ln

t

2π
.

4.3 Arctangent integrals containing hyperbolic functions

Integrals of the arctangent function in combination with hyperbolic functions are not
presented at all in [28], and there are few of them in [53, vol. I, § 2.7]. For example,
integral no. 39-c is given in [53, vol. I] as no. 2.7.5-10, but the provided formula is
incorrect.35

39* By using Cauchy’s residue theorem, prove that for any Rea > 0 and Reb > 0

(a)

∞̂

0

arctgx

shx
dx =

∞̂

0

arctg lnx

x2 − 1
dx = 2

∞̂

1

arctg lnx

x2 − 1
dx = 2

1ˆ

0

arctg lnx

x2 − 1
dx

=
1ˆ

0

arctg(2 arcthx)

x
dx =

∞̂

0

arctg
(
2 arcth e−x

)
dx =

π/2ˆ

0

x

sh tgx · cos2 x
dx

= π

{
lnΓ

(
1

2π

)
− lnΓ

(
1

2
+ 1

2π

)
− 1

2
ln 2π

}

= π

{
2 lnΓ

(
1

2π

)
− lnΓ

(
1

π

)
− lnπ

√
8

}
+ ln 2

(b)

1ˆ

0

arctg arcthx

x
dx = π

{
lnΓ

(
1

π

)
− lnΓ

(
1

2
+ 1

π

)
− 1

2
lnπ

}

(c)

1ˆ

0

arcth arcthx

x
dx = −i

iˆ

0

arctg arctgx

x
dx

= −πi

{
lnΓ

(
− i

π

)
− lnΓ

(
1

2
− i

π

)
− 1

2
lnπ − πi

4

}

35More precisely, the last term in the right-hand side of [53, vol. I, no. 2.7.5-10] is incorrect: the argument
of the square root should be multiplied by 2. Curiously, in the original Russian edition of [53], this integral
is neither correctly evaluated, but the error is not the same: the coefficient 2 in the argument of the logarithm
must be placed under the square root sign.
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(d)

∞̂

0

arctgx

shπx
dx = 1

2
ln

π

2

(e)

∞̂

0

arctgax

shbx
dx = π

b

{
lnΓ

(
b

2πa

)
− lnΓ

(
1

2
+ b

2πa

)
− 1

2
ln

2πa

b

}

Nota bene: Although these formulas do not appear correctly in modern mathematical
literature, a particular case of one of them may be found in the Malmsten et al.’s
dissertation [40, p. 52, Eq. (63)] and it is correct. As usual, Malmsten et al. used the
series expansion technique in order to get the result.

40* By using results of the previous exercise, prove that for any Rea > 0 and Reb >

0
(a) this analog of Binet’s formula:

∞̂

0

arctgax

ebx + 1
dx = −π

b
lnΓ

(
1

2
+ b

2πa

)
− 1

2a

(
1 + ln

2πa

b

)
+ π

2b
ln 2π,

(b) this analog of Legendre’s formula:

∞̂

0

x dx

(ebx + 1)(x2 + a2)
=

∞̂

0

x dx

(eax + 1)(x2 + b2)
= 1

2

{
Ψ

(
1

2
+ ab

2π

)
− ln

ab

2π

}

Hint: Make use of Binet’s formula for the logarithm of the Γ -function

lnΓ (z) =
(

z − 1

2

)
ln z − z + 1

2
ln 2π + 2

∞̂

0

arctg(x/z)

e2πx − 1
dx, (54)

see [12, pp. 335–336] and [71, pp. 250–251], [9, vol. I, p. 22, Eq. 1.9(9)]. It is inter-
esting that Legendre was very close to this expression and Binet also remarked this.
On p. 190 [64, vol. II], we find this expression

∞̂

0

x dx

(e2πx − 1)(m2 + x2)
= − 1

4m
+ 1

2
lnm − 1

2
Ψ (m), (55)

which is exactly the derivative of the above Binet’s formula with respect to z at z = m.
In order to arrive at Binet’s formula (54), it was just sufficient to integrate (55) over m

and to find the constant of integration, but Legendre left this honour to Binet. It seems
also almost incredible that it took 23 years to get formula (54) from (55). Finally, a
more general version of Binet’s formula containing ebx − 1 in the denominator of the
integrand appears also in Prudnikov et al.’s tables [53, vol. I] as no. 2.7.5-6 and is
correct.
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By the way, Lerch in [37, p. 19, Eq. (30)] (written in Czech) gives a more general
case of formula (a)

∞̂

0

e2πx cosϕ − 1

e4πx − 2e2πx cosϕ + 1
arctg

u

x
dx = −1

4

{
lnΓ

(
u − ϕ

2π

)
+ lnΓ

(
u + ϕ

2π

)

+ ln

(
u − ϕ

2π

)
+ 2u(1 − lnu) + ln sin

ϕ

2
− lnπ

}

in which parameters u and ϕ are such that 0 < u� 1 and 0 < ϕ < 2πu. This formula
reduces to exercise a) when setting u = 1 and ϕ = π/2.

41* By using the contour integration method, prove that if p is a rational part of b,
i.e. p = bm/n, where a � 0, Reb > 0 and numbers m and n are positive integers
such that m < n, then

(a)

∞̂

0

shpx · arctgax

chbx
dx

= π

b

2n−1∑
l=0

(−1)l sin
(2l + 1)mπ

2n
· lnΓ

(
2l + 1

4n
+ b

2πan

)

(b)

∞̂

0

chpx · arctgax

shbx
dx = π

b

2n∑
l=1

(−1)l cos
mπl

n
· lnΓ

(
l

2n
+ b

2πan

)

+ π

2b
ln

2πan

b

(c)

∞̂

0

shpx · arctgax

chbx + cosϕ
dx = − π

b sinϕ

×
n−1∑
l=0

{
sin

(2l + 1)mπ + mϕ

n
· lnΓ

(
2l + 1

2n
+ b + aϕ

2πan

)

− sin
(2l + 1)mπ − mϕ

n
· lnΓ

(
2l + 1

2n
+ b − aϕ

2πan

)}

(d)

∞̂

0

shpx · arctgax

chbx + 1
dx

= −2πm

bn

n−1∑
l=0

cos
(2l + 1)mπ

n
· lnΓ

(
2l + 1

2n
+ b

2πan

)
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− 1

bn

n−1∑
l=0

sin
(2l + 1)mπ

n
· Ψ
(

2l + 1

2n
+ b

2πan

)

where in (c) |Reϕ| < π , ϕ �= 0; see (d) for ϕ = 0.

Nota bene: A particular case of formula (a) for b = π was already derived by Malm-
sten et al. [40, p. 70, Eq. (83)]. He separately treated cases (m + n) odd and (m + n)

even and simplified the result in both cases (simplification is not the same, see e.g. ex-
ercise no. 48 where we also treat separately these two cases and performed such a
simplification). Other formulas obtained above seem to be never released before.36

42* By letting a → ∞ in the previous exercise, prove formula (23).

43* Prove by the contour integration method the following formulas:

(a) p.v.

+∞ˆ

−∞

arctgx

shx ± sh t
dx = π

2 ch t

{
ln
(
1 + t2)− 2 ln 2π

}

+ 2π

ch t
Re

{
lnΓ

(
1

2π
+ it

2π

)
− lnΓ

(
1

2
+ 1

2π
− it

2π

)}
,

(b) p.v.

+∞ˆ

−∞

arctgax

shbx ± shbt
dx = π

2b chbt

{
ln
(
1 + a2t2)− 2 ln

2πa

b

}

+ 2π

b chbt
Re

{
lnΓ

(
b

2πa
+ ibt

2π

)
− lnΓ

(
1

2
+ b

2πa
− ibt

2π

)}
,

(c)

+∞ˆ

−∞

arctgax ± arctgat

shbx ± shbt
dx = π

2b chbt

{
ln
(
1 + a2t2)− 2 ln

2πa

b

}

+ 2t arctgat

chbt
+ 2π

b chbt
Re

{
lnΓ

(
b

2πa
+ ibt

2π

)
− lnΓ

(
1

2
+ b

2πa
− ibt

2π

)}

where a > 0, b > 0, t > 0.

44* Show that

(a)

∞̂

0

1 − x cthx

shx
arctg

(
2x

π

)
dx = π

2

(
1 − π

2

)
,

(b)

∞̂

0

(1 − x cthx) arctgax

shx
dx = 1

2a

{
Ψ

(
1

2πa

)
− Ψ

(
1

2
+ 1

2πa

)
+ πa

}
,

36However, it seems fair to remark that an integral quite similar to (b) was also evaluated by Malmsten
et al. [40, p. 55, Eq. (67)].
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where Rea > 0.

Hint: Use results of no. 39.

45* Prove the following results:

(a)

∞̂

0

shx

ch2 x
arctgx dx =

∞̂

0

(x2 − 1) arctg lnx

(x2 + 1)2
dx

= 2

∞̂

1

(x2 − 1) arctg lnx

(x2 + 1)2
dx = 2

1ˆ

0

(x2 − 1) arctg lnx

(x2 + 1)2
dx

=
∞̂

1

arctg arcchx

x2
dx =

eˆ

1

arctg

(
arcch

1

lnx

)
dx

x

=
1ˆ

0

arctg

(
arcch

1

x

)
dx =

tg 1ˆ

0

arctg

(
arcch

1

arctgx

)
dx

1 + x2

=
th1ˆ

0

arctg

(
arcch

1

arcthx

)
dx

1 − x2
=

π/2ˆ

0

x · th tgx

ch tgx · cos2 x
dx

= 1

2

{
Ψ

(
3

4
+ 1

2π

)
− Ψ

(
1

4
+ 1

2π

)}
,

(b)

∞̂

0

shx

ch2 x
arctg

(
2x

π

)
dx = ln 2,

(c)

∞̂

0

shbx

ch2 bx
arctgax dx = 1

2b

{
Ψ

(
3

4
+ b

2πa

)
− Ψ

(
1

4
+ b

2πa

)}
,

where a > 0, Reb > 0.

46* Show that for any a � 0 and Reb > 0

(a)

∞̂

0

shpx · arctgax

sh2 bx
dx = πm

bn

{
lnΓ

(
b

2πan

)
− 1

2
ln

2πan

b

}

+ πm

bn

2n−1∑
l=1

cos
mπl

n
· lnΓ

(
l

2n
+ b

2πan

)
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+ 1

2bn

2n−1∑
l=1

sin
mπl

n
· Ψ
(

l

2n
+ b

2πan

)

(b)

∞̂

0

shpx · arctgax

ch2 bx
dx = −πm

bn

2n−1∑
l=0

cos
(2l + 1)mπ

2n
· lnΓ

(
2l + 1

4n
+ b

2πan

)

− 1

2bn

2n−1∑
l=0

sin
(2l + 1)mπ

2n
· Ψ
(

2l + 1

4n
+ b

2πan

)
,

where p = bm/n and numbers m and n are positive integers such that m < 2n.

47* Show that for any a � 0 and Reb > 0

(a)

∞̂

0

shbx

ch3 bx
arctgax dx = 1

2πb
Ψ1

(
1

2
+ b

πa

)
,

(b)

∞̂

0

(1 − chbx) arctgax

sh3 bx
dx = π

2b

{
lnΓ

(
1

2
+ b

2πa

)
− lnΓ

(
b

2πa

)}

+ π

4b
ln

2πa

b
+ 1

4πb
Ψ1

(
1

2
+ b

2πa

)
,

(c)

∞̂

0

(1 − chbx)2 arctgax

sh5 bx
dx = π

4b

{
lnΓ

(
b

2πa

)
− lnΓ

(
1

2
+ b

2πa

)}

− π

8b
ln

2πa

b
− 1

6πb
Ψ1

(
1

2
+ b

2πa

)
− 1

96π3b
Ψ3

(
1

2
+ b

2πa

)
.

48* (a) By the contour integration method, prove that if p is a rational part of b,
i.e. p = bm/n, where b is some positive parameter and numbers m and n are positive
integers such that m < 3n, then

∞̂

0

shpx · arctgax

ch3 bx
dx

= π(n2 − m2)

2bn2

2n−1∑
l=0

(−1)l sin
(2l + 1)mπ

2n
· lnΓ

(
2l + 1

4n
+ b

2πan

)

+ m

2bn2

2n−1∑
l=0

(−1)l cos
(2l + 1)mπ

2n
· Ψ
(

2l + 1

4n
+ b

2πan

)
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+ 1

8bπn2

2n−1∑
l=0

(−1)l sin
(2l + 1)mπ

2n
· Ψ1

(
2l + 1

4n
+ b

2πan

)

or, if considering separately cases (m + n) odd and (m + n) even,

∞̂

0

shpx · arctgax

ch3 bx
dx

= 1

b
·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π(n2 − m2)

2n2

n−1∑
l=0

(−1)l+1 sin
(2l + 1)mπ

2n
· ln

{
Γ
( 1

2 + 2l+1
4n

+ b
2πan

)
Γ
( 2l+1

4n
+ b

2πan

)
}

+ m

2n2

n−1∑
l=0

(−1)l cos
(2l + 1)mπ

2n
·
{
Ψ

(
2l + 1

4n
+ b

2πan

)

− Ψ

(
1

2
+ 2l + 1

4n
+ b

2πan

)}

+ 1

8πn2

n−1∑
l=0

(−1)l sin
(2l + 1)mπ

2n
·
{
Ψ1

(
2l + 1

4n
+ b

2πan

)

−Ψ1

(
1

2
+ 2l + 1

4n
+ b

2πan

)}
, if m + n is odd;

π(n2 − m2)

2n2

n−1∑
l=0

(−1)l sin
(2l + 1)mπ

2n
· lnΓ

(
2l + 1

2n
+ b

πan

)

+ m

n2

n−1∑
l=0

(−1)l cos
(2l + 1)mπ

2n
· Ψ
(

2l + 1

2n
+ b

πan

)

+ 1

2πn2

n−1∑
l=0

(−1)l sin
(2l + 1)mπ

2n
· Ψ1

(
2l + 1

2n
+ b

πan

)
,

if m + n is even.

(b) Following Malmsten’s idea of establishing relationships between the Γ -function
and its logarithmic derivative, see (23), prove this more general formula implying the
trigamma function:

n2 − m2

4n2

{
Ψ

(
1

4
+ m

4n

)
− Ψ

(
1

4
− m

4n

)
− π tg

mπ

2n

}

= n2 − m2

n2

2n−1∑
l=0

(−1)l sin
(2l + 1)mπ

2n
· lnΓ

(
2l + 1

4n

)

+ m

πn2

2n−1∑
l=0

(−1)l cos
(2l + 1)mπ

2n
· Ψ
(

2l + 1

4n

)
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+ 1

4π2n2

2n−1∑
l=0

(−1)l sin
(2l + 1)mπ

2n
· Ψ1

(
2l + 1

4n

)
+ m

2n

which holds for any positive integers m and n such that m < 3n. Show that the right
part, analogous to (24), may be transformed into elementary functions and thus does
not contain any additional information about the trigamma function.

Hint: First, put for simplicity b = 1 and write the integral (a) in the following form:

∞̂

0

sh
(

m
n
x
)

ch3 x
arctg(ax) dx

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n

∞̂

0

shmy

ch3 ny
arctg(any)dy, y ≡ x

n
, if m + n is odd,

n

2

∞̂

0

sh( 1
2my)

ch3( 1
2ny)

arctg( 1
2any)dy, y ≡ 2x

n
, if m + n is even.

Then, by taking into account that both integrands are rational functions of ey and,
hence, are 2πi-periodic, apply formula (38) to each of these integrals.37 At the final
stage, put b = 1, make a → ∞, and then compare the answer with the integral

∞̂

0

shαx

ch3 x
dx = −α

2
+ 1 − α2

4

{
Ψ

(
1

4
+ α

4

)
− Ψ

(
1

4
− α

4

)
− π tg

πα

2

}
,

|Reα| < 3. The latter result may be obtained by various methods. For instance, it
may be obtained by making use of the following integral

∞̂

0

e−αx

shβ x
dx = 2β−1 · B

(
α + β

2
,1 − β

)
, Reβ < 1, Re(α + β) > 0

which is, in turn, easily derived from the definition of the Euler’s B-function by a
simple change of variable, see, e.g., exercise no. 31.14.3 from [23]. By the way, in
this book, we found several errors related to the latter kind of integrals. In exercise
no. 31.11.6, in the right part the coefficient 2β−1 should be replaced by 2β−2. The
answer given in exercise no. 31.11.5 is wrong: the integral in the left part cannot be
expressed via the Euler’s B-function. Unfortunately, these errors were not corrected
in the second and the last edition of this book. Finally, as regards the simplification of
the right part of (b) in terms of elementary functions, it is sufficient to show that the

37Alternatively, it is also possible to consider only the upper integral and then study two cases: (m + n)

is odd and (m + n) is even. This method will lead to the same formula, albeit the calculation might seem
more tedious.
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pairwise summation of terms in each sum, i.e. the summation of the kind al +a2n−1−l ,
where, for example, as regards the third sum

al ≡ (−1)l sin
(2l + 1)mπ

2n
· Ψ1

(
2l + 1

4n

)
,

does not contain the Γ -function, nor polygamma functions.

49* Analogously to the previous exercise, show that for any a � 0 and Reb > 0

ˆ ∞

0

shpx · arctgax

ch4 bx
dx

= − (4n2 − m2)πm

6bn3

2n−1∑
l=0

cos
(2l + 1)mπ

2n
· lnΓ

(
2l + 1

4n
+ b

2πan

)

− 4n2 − 3m2

12bn3

2n−1∑
l=0

sin
(2l + 1)mπ

2n
· Ψ
(

2l + 1

4n
+ b

2πan

)

− m

8bπn3

2n−1∑
l=0

cos
(2l + 1)mπ

2n
· Ψ1

(
2l + 1

4n
+ b

2πan

)

− 1

48bπ2n3

2n−1∑
l=0

sin
(2l + 1)mπ

2n
· Ψ2

(
2l + 1

4n
+ b

2πan

)

where p = bm/n and numbers m and n are positive integers such that m < 4n.

50* Prove that Catalan’s constant is the following limit:

G = 1 + lim
α→1

{ αˆ

0

(1 + 6x2 + x4) arctgx

x(1 − x2)2
dx + 2 arcthα − πα

1 − α2

}
.

Hint: Show first that
¨

R2

x sin(2xy/π)

(x2 + π2) chx shy
dx dy = 8(1 − G).

4.4 Integrals containing logarithm of the Γ -function or polygamma functions in
combination with hyperbolic functions

Such integrals are not presented at all in Gradshteyn and Ryzhik’s tables [28], nor
in the second and third volumes of Prudnikov et al.’s tables [53]. Moreover, to our
knowledge, all results given below are new.
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51* Prove that for any a � 0

+∞ˆ

−∞

lnΓ
(

x
πi

+ a
)

chx
dx = π

{
(a − 1) ln 2 − 1

2
lnπ + 2 lnΓ

(
1

4
+ a

2

)}
.

Hint: Consider
‰

0�Im z�π

lnΓ
(

z
πi

+ a
)

ch z
dz.

52* Prove that
+∞ˆ

−∞

Ψ
(

x
πi

± 1
2

)
chx

dx = −π(γ ± ln 2)

Hint: Consider
‰

0�Im z�π

Ψ
(

z
πi

− 1
2

)
ch z

dz.

53* Prove that for any a > 0

+∞ˆ

−∞

Ψ
(

x
πi

+ a
)

chx
dx = π

{
ln 2 + Ψ

(
1

4
+ a

2

)}

Hint: Consider
‰

0�Im z�π

Ψ
(

z
πi

+ a
)

ch z
dz.

54* The formula in exercise no. 51 is valid for a � 0, while that in no. 53 is valid
only for a > 0. A simple way to shown that it is not valid for a = 0 is to put a = 0 into
no. 53, which yields for the corresponding integral π

(− 1
2π − γ − 2 ln 2

)
. However,

numeric computation38 shows that this result is incorrect; the correct one is

p.v.

+∞ˆ

−∞

Ψ
(

x
πi

)
chx

dx =
∞̂

0

Ψ
(

x
πi

)+Ψ
(− x

πi

)
chx

dx = π

(
+1

2
π − γ − 2 ln 2

)
.

Explain this paradox and prove the above result.

55* Prove that for any a > 0

+∞ˆ

−∞

Ψn

(
x
πi

+ a
)

chx
dx = π

2n
Ψn

(
1

4
+ a

2

)
, n = 1,2,3, . . .

38With the help of Maple 12.
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where Ψn denotes the nth polygamma function.

56* Prove that

+∞ˆ

−∞

Ψ
(

x
2πi

− 1
2

)
(x2 + π2) chx

dx =
+∞ˆ

−∞

Ψ
( 3

2 − x
2πi

)
(x2 + π2) chx

dx = 12 − 4γ − 12 ln 2

π
+ γ − 1.

Hint: Consider
‰

0�Im z�2π

Ψ
(

z
2πi

− 1
2

)
(z − πi) ch z

dz.

57* Prove that

(a)

+∞ˆ

−∞

Ψ
(± x

2πi

)
(x2 + π2) chx

dx =
+∞ˆ

−∞

Ψ
(
1 ± x

2πi

)
(x2 + π2) chx

dx

= 4 − 4γ − 12 ln 2

π
+ γ + 2 ln 2,

(b)

+∞ˆ

−∞

Ψ
( 1

2 ± x
2πi

)
(x2 + π2) chx

dx = γ − 4(γ + 3 ln 2 − 2 G)

π
,

(c)

+∞ˆ

−∞

x Ψ
( 1

2 ± x
2πi

)
(x2 + π2) chx

dx = ±πi(2 − 3 ln 2),

(d)

+∞ˆ

−∞

x Ψ
(

x
2πi

− 1
2

)
(x2 + π2) chx

dx = i (4 + 3π − 3π ln 2 − 8 G),

(e)

+∞ˆ

−∞

x Ψ
(

x
πi

)
(4x2 + π2) chx

dx = i

8

(
2π − π2 − 4 ln 2

)
.

4.5 Exercises concerning the Γ -function at rational arguments and the Stieltjes
constants

58* Prove that the Γ -function of any rational argument may be always expressed
via a finite combination of Malmsten’s integrals Ta(0) from (10), a = mπ/n, and
elementary functions:

lnΓ

(
k

n

)
= (n − 2k) ln 2πn

2n
+ 1

2

{
lnπ − ln sin

πk

n

}
+ 1

πn

n−1∑
m=1

Im,n · sin
2πmk

n
,
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k = 1,2, . . . , n−1, n ∈ N�2, where, for brevity, we designated by Im,n the following
quantity:

Im,n ≡
∞̂

0

sh(m
n
x)

shx
lnx dx = π

2
tg

πm

2n
· lnn + n

1ˆ

0

xm−1 − x−m−1

xn − x−n
ln ln

1

x
dx

= π

2
tg

πm

2n
· lnn + n

∞̂

1

xm−1 − x−m−1

xn − x−n
ln lnx dx = π

2

{
tg

πm

2n
· lnπ + Ta(0)

}
.

Hint: First, take the second equation from (13) and put: x = 0, 2m instead of m

and 2n instead of n. This trick makes the equation valid for any integer values of
m and n because 2m + 2n is always even. Then, notice that the obtained expression
represents a kind of the discrete sine transform for finite-length sequences. Hence,
use the orthogonality property of sin(πml/n) over the discrete interval [1, n − 1]

n−1∑
m=1

sin

(
πml

n

)
sin

(
πmk

n

)
= n

2
δl,k,

l = 1,2, . . . , n− 1, k = 1,2, . . . , n− 1. Perform a simplification with the help of this
formula

n−1∑
m=1

tg
πm

2n
· sin

πmk

n
= (−1)k+1 · (n − k).

which is valid for positive integrers k and n such that k � 2n − 1. At the final stage,
rewrite the result for 2k instead of k.

There is also another way to prove this formula. Remark first that

n−1∑
m=1

sh

(
mx

n

)
sin

(
2πmk

n

)
= sin 2πk

n
· shx

2

(
cos 2πk

n
− ch x

n

)

k = 1,2, . . . , n − 1, x ∈ C. Then, apply the main formula from exercise no. 2.

59* Analogously to the previous exercise, prove that for any k = 0,1, . . . ,2n − 1,
where n is a positive integer,

lnΓ

(
2k + 1

4n

)
= (−1)k

4n
ln

2π2

n
+ ln 2πn

2n

(
n − 2

⌊
k + 1

2

⌋)
− (−1)k

n
lnΓ

(
1

4

)

+ 1

2

{
lnπ − ln sin

π(2k + 1)

4n

}
− (−1)k

πn

n−1∑
m=0

Im,n · cos
(2k + 1)mπ

2n
,
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where

Im,n ≡
∞̂

0

ch
(

m
n
x
)

chx
lnx dx = π

2
sec

πm

2n
· lnn + n

∞̂

1

xm−1 + x−m−1

xn + x−n
ln lnx dx.

Hint: First, consider formula (b) obtained in exercise no. 3 and put a = 0 and b = 1.
Then, make use of the following semi-orthogonality property:

n−1∑
m=0

cos
(2l + 1)mπ

2n
· cos

(2k + 1)mπ

2n
= n

2
δl,k + n

2
δl,2n−1−k + 1

2
,

l = 0,1, . . . ,2n−1, k = 0,1, . . . ,2n−1. At the final stage, use the reflection formula
for the Γ -function, the Gauss’ multiplication theorem and the fact that

n−1∑
m=0

sec
πm

2n
· cos

(2k + 1)mπ

2n
= (−1)k

(
n − 2

⌊
k + 1

2

⌋)
,

for any k = 0,1, . . . ,2n − 1.

60* Similarly to the previous exercises, show that

lnΓ

(
k

n

)
= (n − 2k) ln 2πn

2n
+ 1

2

{
lnπ − ln sin

πk

n

}

+ 1

2π

n−1∑
m=1

γ + ln(m/n)

m
· sin

2πmk

n
+ 1

πn

n−1∑
m=1

Im,n · sin
2πmk

n

k = 1,2, . . . , n − 1, n ∈N�2, where

Im,n ≡
∞̂

0

sh(m
n
x)

ex − 1
lnx dx =

(
n

2m
− π

2
ctg

πm

n

)
lnn+ n

2

∞̂

1

xm−1 − x−m−1

xn − 1
ln lnx dx.

Hint: First, consider formula (a) obtained in exercise no. 25. Then, use the semi-
orthogonality of sin(2πml/n) over [1, n − 1]

n−1∑
m=1

sin

(
2πml

n

)
sin

(
2πmk

n

)
= n

2
δl,k − n

2
δl,n−k

l = 1,2, . . . , n − 1, k = 1,2, . . . , n − 1. Finally, use the reflection formula for the
Γ -function and recall that

n−1∑
m=1

ctg
πm

n
· sin

2πmk

n
= n − 2k

where k and n are positive integers such that k < n.
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61* Prove that for k = 1,2, . . . , n − 1, n ∈N�2,

lnΓ

(
k

n

)
= (n − 2k) lnπn

2n
+ 1

2

{
lnπ − ln sin

πk

n

}
+ 2

πn

n−1∑
m=1

Im,n · sin
2πmk

n
,

where

Im,n ≡
∞̂

0

sh2(m
n
x
)

sh2 x
lnx dx.

Hint: Take formula (b) from no. 11 and set b = 1. Multiply both sides by sin 2πmk
n

and then sum over m = 1,2, . . . , n − 1. Remarking that

n−1∑
m=1

m · sin
2πml

n
· sin

2πmk

n
= n2

4
(δl,k − δl,n−k),

l = 1,2, . . . , n − 1, k = 1,2, . . . , n − 1, and that

n−1∑
m=1

m · ctg
πm

n
· sin

2πmk

n
= n

2
(n − 2k),

for k = 1,2, . . . , n − 1, we obtain the above formula. Another way to prove the same
result is to show that

n−1∑
m=1

Im,n · sin
2πmk

n
= 1

4
sin

2πk

n

∞̂

0

lnx

cos2 πk
n

− ch2 x
n

dx,

k = 1,2, . . . , n − 1; x ∈C, and then, to apply formula (37) to the latter integral.

62* Let ϕl,n be some known function of discrete arguments l and n, which is defined
at least for l = 1,2, . . . , n−1 and n ∈N�2. It is obvious that any countable combina-
tion of functions ϕl,n with other known functions will be a finite and known quantity.
Such a quantity is, for example,

Φk,n =
n−1∑
l=1

ϕl,n sin
πlk

n
, k = 1,2, . . . , n − 1.

One may easily note that the above formula is actually the expansion of the func-
tion Φk,n terms of orthogonal sines with coefficients ϕl,n; in other words, Φk,n is
the discrete sine transform of the sequence ϕ1,n, ϕ2,n, . . . , ϕn−1,n. By using inter-
mediate results of exercise no. 58, prove the following functional relationship on
Γ ( 1

2n
),Γ ( 2

2n
),Γ ( 3

2n
), . . . ,Γ ( 1

2 − 1
2n

):
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n−1∑
k=1

(−1)kΦk,n lnΓ

(
k

2n

)
= 1

2π

n−1∑
m=1

Im,n ϕm,n − 1

2

n−1∑
l=1

ϕl,n σl,n

− ln(2π2n)

4

n−1∑
l=1

ϕl,n tg
πl

2n
+ lnπ

4

n−1∑
l=1

(−1)l+nϕl,n tg
πl

2n
,

where

σl,n ≡
n−1∑
k=1

(−1)k sin
πlk

n
ln sin

πk

2n
,

the integral Il,n was defined previously in no. 58, and the above formula is valid for
any n ∈N�2.

(b) Suppose that the discrete function Υk,n may be represented by the finite Fourier
series39

Υk,n = β0,n +
n−1∑
l=1

(
αl,n sin

2πlk

n
+ βl,n cos

2πlk

n

)
, k = 1,2, . . . , n − 1, (56)

where coefficients αl,n and βl,n are known and finite (alternatively, Υk,n can be re-
garded as a discrete Fourier transform). Prove then that the following functional rela-
tionship for the logarithm of the Γ -function holds:

n−1∑
k=1

Υk,n lnΓ

(
k

n

)
= 1

π

n−1∑
m=1

I2m−n,nαm,n + lnπn

2

n−1∑
l=1

αl,n ctg
πl

n
− 1

2

n−1∑
l=1

αl,nςl,n

− lnπ

2

n−1∑
l=1

βl,n + (n − 1) lnπ

2
β0,n − 1

2

n−1∑
l=0

βl,n ωl,n,

n ∈N�2, where we designated for brevity

ςl,n ≡
n−1∑
k=1

sin
2πlk

n
ln sin

πk

n
, ωl,n ≡

n−1∑
k=1

cos
2πlk

n
ln sin

πk

n

and the integral Il,n was defined previously in no. 58. Note that coefficients βl,n

do not affect the “computability” of the integral
∑

I2m−n,n αm,n. Moreover, if all
coefficients αl,n = 0, then the right part contains elementary functions only.

Nota bene: A close study of the above-derived formulas reveals several interesting
things. First of all, physically, all equations represent a kind of Parseval’s equations
of closure (i.e., the law of conservation of energy). Moreover, from exercise (b), we
can straightforwardly establish Parseval’s theorem containing the sum of ln2 Γ (k/n)

in the left part, but the right part will contain products of integrals Im,n with different
indices whose evaluation seems to be quite difficult. Second, if one could find such a

39For more details of the finite Fourier series, see e.g. [30, Chap. 6].
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discrete functions Φk,n or Υk,n that coefficients ϕm,n or αm,n being summed with the
integrand from Im,n or I2m−n,n respectively, gave a new and “computable” integral,
then, it should be possible to obtain a new functional relationship for the logarithm
of the Γ -function.

63* (a) Show that Malmsten’s integral from exercise no. 3-a for a = 0 may be also
computed by means of the first generalized Stieltjes constant γ1(v)

∞̂

0

shpx · lnx

shx
dx = −1

2

{
π(γ + ln 2) tg

πp

2
+ γ1

(
1

2
− p

2

)
− γ1

(
1

2
+ p

2

)}
,

and this result holds for continuous and complex values of p such that |Rep| < 1.
(b) By making use of the previous result, prove following functional relationships
for the derivatives of the Hurwitz ζ -functions and for the first generalized Stieltjes
constants:

(1) lim
s→1

{
ζ ′
(

s,
1

2
− m

2n

)
− ζ ′

(
s,

1

2
+ m

2n

)}
= γ1

(
1

2
+ m

2n

)
− γ1

(
1

2
− m

2n

)

= 2π

2n−1∑
l=1

(−1)l sin
mπl

n
· lnΓ

(
l

2n

)
+ π(γ + ln 4πn) tg

mπ

2n
,

(2) lim
s→1

{
ζ ′
(

s,1 − m

n

)
− ζ ′

(
s,

m

n

)}
= γ1

(
m

n

)
− γ1

(
1 − m

n

)

= 2π

n−1∑
l=1

sin
2πml

n
· lnΓ

(
l

n

)
− π(γ + ln 2πn) ctg

mπ

n

where m = 1,2, . . . , n − 1, n ∈ N�2, and where derivatives are taken with respect to
the first argument of ζ(s, v).

Nota bene: Formulas (b.1) and (b.2) are not new40 and may be directly obtained by
differentiating the functional equation for the Hurwitz ζ -function, see e.g. [5, p. 261,
§12.9], [45, Eq. (6)], and by taking into account that ζ ′(0, v) = lnΓ (v) + ζ ′(0) =
lnΓ (v) − 1

2 ln 2π , see e.g. [9, vol. I, p. 26, Eq. 1.10(10)], [11, Eq. (3)] or [2, Eq. (3)].
Though these relationships do not appear to be completely novel, the derivation from
Malmsten’s results (dated 1842!) and from the Mittag–Leffler theorem seems to be
original.

Hint: On the one hand, it appears from exercise no. 22 that the integral Υ (ϕ) may be
calculated by means of the Hurwitz ζ -function. On the other hand, one may remark
that the derivative dΥ/dϕ at ϕ = πm/n, where m and n are positive integers such
that m < n, coincide with Malmsten’s integral from exercise no. 3. By taking into
account that

∂

∂x
ζ ′′(s, f (x)

)= −f ′
x · {2ζ ′(s + 1, f (x)

)+ sζ ′′(s + 1, f (x)
)}

,

40According to [2] formula (c) was first proved by Almkvist and Meurman in a private communication.
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where derivatives ζ ′ and ζ ′′ are taken with respect to s, one easily arrives at the first
part of formula (b.1) [the part without the Stieltjes constants]. Now, it is well known
that the Hurwitz ζ -function ζ(s, v) is a meromorphic function on the entire complex
s-plane and that its only pole is a simple pole at s = 1 with residue 1. It can be,
therefore, expanded as a Laurent series in a neighborhood of s = 1 in the following
way

ζ(s, v) = 1

s − 1
− Ψ (v) +

∞∑
n=1

(−1)n(s − 1)n

n! γn(v), s �= 1.

The coefficients γn(v) appearing in the regular part of this expansion are called gen-
eralized Stieltjes constants.41 From this formula, it follows that in a neighborhood of
s = 1 ζ ′(s, v) = −(s −1)−2 −γ1(v)+O(s −1) and ζ ′′(s, v) = 2(s −1)−3 +γ2(v)+
O(s − 1), and thus, the limit in (b.1) reduces to the difference between two Stieltjes
constants. This yields formula (b.1) in its final form, as well as explaining how for-
mula (a) was obtained. Now, formula (b.1) may be rewritten in a slightly different
way. Putting 2m − n instead of m, and then, using the duplication formula for the
Γ -function, as well as bearing in mind that

2n−1∑
l=1

l · sin
2πml

n
= −n ctg

mπ

n
, m = 1,2, . . . , n − 1,

one arrives at formula (b.2).

64* (a) Show that Malmsten’s integral from exercise no. 3-b for a = 0 may be also
evaluated by means of the first generalized Stieltjes constant γ1(v)

∞̂

0

chpx · lnx

chx
dx = 1

2

{
γ1

(
1

2
+ p

2

)
+ γ1

(
1

2
− p

2

)

− γ1

(
1

4
+ p

4

)
− γ1

(
1

4
− p

4

)}

− 1

2
ln2 2 + ln 2 · Ψ

(
1

2
+ p

2

)
+ π

2
(γ + ln 2) tg

πp

2

− π

2
(γ + 2 ln 2) ctg

(
π

4
− πp

4

)

where parameter p is assumed to be continuous and complex lying within the strip
|Rep| < 1.

41This expansion for the Riemann ζ -function was first given by Stieltjes, and therefore, was written in
terms of constants γn ≡ γn(1), which were later called the Stieltjes constants. Constants γn(v) with ar-
bitrary v represent a more general case and occur when expanding the Hurwitz ζ -function instead of the
Riemann ζ -function; such constants are called generalized Stieltjes constants. For more information, see
[9, vol. I, p. 26, Eq. 1.10(9), and vol. III, §17.7, p. 189], [14], [66, p. 16], [11, 17, 18, 38, 48].
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(b) Prove that the following functional relationship between first derivatives of
the Hurwitz ζ -function, first generalized Stieltjes constants and the logarithm of the
Γ -function takes place:

lim
s→1

{
ζ ′
(

s,
m

n

)
+ ζ ′

(
s,1 − m

n

)
− ζ ′

(
s,

m

2n

)
− ζ ′

(
s,

1

2
− m

2n

)}

= lim
s→1

{
ζ ′
(

s,
m

n

)
− ζ ′

(
s,

m

2n

)}

+ lim
s→1

{
ζ ′
(

s,1 − m

n

)
− ζ ′

(
s,

1

2
− m

2n

)}

= −
{
γ1

(
m

n

)
+ γ1

(
1 − m

n

)
− γ1

(
m

2n

)
− γ1

(
1

2
− m

2n

)}

= 2π

n−1∑
l=0

sin
(2l + 1)mπ

n
· lnΓ

(
2l + 1

2n

)
− π csc

mπ

n
· lnπn − ln2 2

+ 2 ln 2 · Ψ
(

m

n

)
− π(γ + ln 2) ctg

mπ

n
− π(γ + 2 ln 2) tg

mπ

2n
, (57)

m = 1,2, . . . , n − 1, n ∈N�2.
Nota bene: This formula, as we come to see later, permits one to evaluate the first
generalized Stieltjes constant at some rational arguments. First of all, the combination
of the above formula with that from exercise no. 63 yields another elegant result

2γ1

(
m

n

)
− γ1

(
m

2n

)
− γ1

(
1

2
− m

2n

)

= 2π

n−1∑
l=1

sin
2πml

n
· lnΓ

(
l

n

)
− 2π

n−1∑
l=0

sin
(2l + 1)mπ

n
· lnΓ

(
2l + 1

2n

)

+ ln2 2 − 2 ln 2 · Ψ
(

m

n

)
+ π(γ + ln 4πn) tg

mπ

2n
, (58)

where m = 1,2, . . . , n − 1, n ∈ N�2. Several important particular cases follow im-
mediately from this expression. Thus, putting m = 1 and n = 2 yields

γ1

(
1

2

)
− γ1

(
1

4

)
= −2π lnΓ

(
1

4

)
+ 3π

2
lnπ + 2π ln 2 + 5

2
ln2 2 + γ

2
(π + 2 ln 2).

Setting m = 1 and n = 3 gives

γ1

(
1

3

)
− γ1

(
1

6

)
= −2π

√
3 lnΓ

(
1

3

)
+ ln2 2 + (3 ln 3 + 2γ ) ln 2

+ π√
3

(
5 ln 2 + 4 lnπ − 1

2
ln 3 + γ

)
, (59)

and so on. However, other particular cases look less beautiful.
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Now, we proceed with the evaluation of the generalized Stieltjes constants at some
rational arguments. Let us first calculate γ1(1/4). By chance, we have ζ

(
s, 1

2

) =
(2s − 1)ζ(s). By expanding both sides in a neighborhood of s = 1 and by equating
coefficients with same powers, we arrive at

γ1

(
1

2

)
= −2γ ln 2 − ln2 2 + γ1 = −1.353459680 . . . (60)

where as usually γ1 ≡ γ1(1) = −0.07281584548 . . . Hence,

γ1

(
1

4

)
= 2π lnΓ

(
1

4

)
− 3π

2
lnπ − 7

2
ln2 2 − (3γ + 2π) ln 2 − γπ

2
+ γ1

= −5.518076350 . . . .

By the formula from exercise no. 63-b.2, we immediately get

γ1

(
3

4

)
= −2π lnΓ

(
1

4

)
+ 3π

2
lnπ − 7

2
ln2 2 − (3γ − 2π) ln 2 + γπ

2
+ γ1

= −0.3912989024 . . . .

Our next step is the evaluation of γ1(1/3), γ1(2/3), γ1(1/6) and γ1(5/6). By using
elementary transformations, one can show that ζ

(
s, 1

3

)+ ζ
(
s, 2

3

)= (3s − 1)ζ(s), and
hence

γ1

(
1

3

)
+ γ1

(
2

3

)
= −3γ ln 3 − 3

2
ln2 3 + 2γ1. (61)

By no. 63-b.2, it follows immediately that

γ1

(
1

3

)
= −3γ

2
ln 3 − 3

4
ln2 3 + π

4
√

3

{
ln 3 − 8 ln 2π − 2γ + 12 lnΓ

(
1

3

)}
+ γ1

= −3.259557515 . . . ,

γ1

(
2

3

)
= −3γ

2
ln 3 − 3

4
ln2 3 − π

4
√

3

{
ln 3 − 8 ln 2π − 2γ + 12 lnΓ

(
1

3

)}
+ γ1

= −0.5989062842 . . . .

By substituting γ1(1/3) into (59), we obtain

γ1

(
1

6

)
= −3γ

2
ln 3 − 3

4
ln2 3 − ln2 2 − (3 ln 3 + 2γ ) ln 2 + 3π

√
3 lnΓ

(
1

3

)

+ π

2
√

3

{
3

2
ln 3 − 14 ln 2 − 12 lnπ − 3γ

}
+ γ1 = −10.74258252 . . . .

In view of the fact that Γ (1/6) = 3
1
2 2− 1

3 π− 1
2 Γ 2(1/3), see e.g. [15, p. 31], the latter

formula may be also written as
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γ1

(
1

6

)
= −3γ

2
ln 3 − 3

4
ln2 3 − ln2 2 − (3 ln 3 + 2γ ) ln 2 + 3π

√
3

2
lnΓ

(
1

6

)

− π

2
√

3

{
3 ln 3 + 11 ln 2 + 15

2
lnπ + 3γ

}
+ γ1 = −10.74258252 . . . .

Hence, by no. 63-b.2, we also have

γ1

(
5

6

)
= −3γ

2
ln 3 − 3

4
ln2 3 − ln2 2 − (3 ln 3 + 2γ ) ln 2 − 3π

√
3

2
lnΓ

(
1

6

)

+ π

2
√

3

{
3 ln 3 + 11 ln 2 + 15

2
lnπ + 3γ

}
+ γ1 = −0.2461690038 . . . .

However, further evaluation of γ1(k/n) faces much more difficulties. To illustrate this
point, we first generalize equations (60) and (61). From elementary transformations,
it follows that

n−1∑
l=1

ζ

(
s,

l

n

)
= (ns − 1

)
ζ(s), n = 2,3,4, . . . .

Writing the Laurent series about s = 1 for both sides and equating coefficients with
same powers, one obtains42

n−1∑
l=1

γ1

(
l

n

)
= −nγ lnn − n

2
ln2 n + (n − 1)γ1, n = 2,3,4, . . . . (62)

Moreover, analogously it can be shown that

n−1∑
l=0

ζ

(
s, v + l

n

)
= nsζ(s, nv), n = 2,3,4, . . .

and hence
n−1∑
l=0

γ1

(
v + l

n

)
= n lnn · Ψ (nv) − n

2
ln2 n + nγ1(nv), n = 2,3,4, . . . . (63)

The latter formula represents a kind of the multiplication theorem for the first Stieltjes
constants. It can be extended to the higher-order Stieltjes constants as follows:

n−1∑
l=0

γp

(
v + l

n

)
= (−1)pn

[
lnn

p + 1
− Ψ (nv)

]
lnp n + n

p−1∑
r=0

(−1)rCr
pγp−r (nv) · lnr n,

n = 2,3,4, where, as usually, Cr
p denotes the binomial coefficient Cr

p = p!
r!(p−r)! .

A particular case of this formula for v = 1/n was already found by Mark Coffey [18,
p. 1830, Eq. (3.28)].

42This formula appears with an error in [18, p. 1836, Eq. (3.54)]: in the right part 1
2 should be replaced by

1
2 lnq .
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Now, another useful property of the generalized Stieltjes constants may be derived
from the recurrence formula for the Hurwitz ζ -function:

ζ(s, v + 1) = ζ(s, v) − v−s .

Expanding both sides in the Laurent series about s = 1, one can easily see that

γ1(v + 1) = γ1(v) − lnv

v
, (64)

and more generally

γp(v + 1) = γp(v) − lnp v

v
, p = 1,2,3, . . . . (65)

This is the recurrence relationship for the pth generalized Stieltjes constant. Thus,
equations (63), (64), and no. 63-b.2 constitute the multiplication theorem, the re-
currence relationship and the reflection formula, respectively, for the first Stieltjes
constant43 and may be quite useful for the exact determination of some values of γ1.

Now, we try to evaluate the set of γ1(k/8), k = 1,2, . . . ,7. Taking into account
previously calculated values, there are 4 unknowns in this set. By making use of
various formulas derived before, we may construct the following system of equations
for these unknowns:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ1(1/8) + γ1(3/8) = · · · see Eq. (58) for m = 1, n = 4,

γ1(1/8) + γ1(3/8) + γ1(5/8) + γ1(7/8) = · · · see Eq. (62) for n = 8,

γ1(1/8) − γ1(7/8) = · · · see no. 63-b.2 for m = 1, n = 8,

γ1(3/8) − γ1(5/8) = · · · see no. 63-b.2 for m = 3, n = 8,

where all quantities in the right part may be expressed in terms of γ , γ1, the Γ -
function and elementary functions. However, this system cannot be solved because
the corresponding matrix is not of full rank:

rank

⎛
⎜⎜⎝

1 1 0 0
1 1 1 1
1 0 0 −1
0 1 −1 0

⎞
⎟⎟⎠= 3.

The same problem of rank arises when trying to evaluate families γ1(k/5), k =
1,2,3,4, and many others.44 For instance, one may try to reuse the procedure of
determination of Γ (1/12) in terms of Γ (1/3) and Γ (1/4) described in [15, p. 31]
for γ1(1/12). An observation of the system of equations II and III [15, pp. 30–31]
shows that the rank of the corresponding matrix is 8, and thus, the system can be

43Note that these relationships are quite similar to those for the logarithm of the Γ -function.
44An attentive analysis shows that equations no. 63-b.2, (58) and (63) for n = 2 and v = m/(2n) [variable
n corresponds to (58)] are linearly dependent.
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solved in terms of Γ (1/3) and Γ (1/4), the value Γ (1/2) being known. An equiv-
alent system of equations for the Stieltjes constants has the rank equal to 7 (due to
the fact that the reflection formula for the first Stieltjes constant no. 63-b.2 slightly
differs from that for the Γ -function), and hence, it cannot be solved. Thus, for the
evaluation of other γ1(k/n), we need to get more independent equations than we cur-
rently possess. By the way, there is an interesting analogy between our results and
those obtained by Miller and Adamchik [45]. Those authors proposed a method for
the evaluation of ζ ′(−2k + 1,p), k ∈N, for some rational values of p in terms of di-
verse transcendental functions. In particular, they provided an explicit expression for
the case p = 1

3 , and concluded that the same method can be equally applied to cases
p = 1

2 , 1
4 , 3

4 , 2
3 , 1

6 and 5
6 . At the same time, they also reported that the evaluation of

ζ ′(−2k + 1,p), k ∈N, for other rational values of p faces some major problems.

Notwithstanding, taking into account previously derived results, we may conjec-
ture that any generalized Stieltjes constant of the form γ1(k/n), where k and n are
positive integers such that k < n, may be expressed by means of the Euler’s con-
stant γ , the first Stieltjes constant γ1 , the logarithm of the 
–function at rational ar-
gument(s) and some relatively simple, perhaps elementary, function. This statement
may be written as follows:

γ1

(
k

n

)
= f (k,n, γ ) +

n−1∑
l=1

αl(k, n) · lnΓ

(
l

n

)
+ γ1, k = 1,2, . . . , n − 1, (66)

Note that a similar relationship exists for the 0th generalized Stieltjes constant, which
is simply γ0(k/n) = −Ψ (k/n), see e.g. [48, p. 153, Eq. (4.7)].

The results above suggest another interesting conjecture: the sum of the first Stielt-
jes constant at a rational argument with its reflected version may be expressed in
terms of some relatively simple function g (possibly elementary), the Euler’s con-
stant γ and the first Stieltjes constant γ1 . In other words

γ1

(
k

n

)
+ γ1

(
1 − k

n

)
= g + 2γ1, k = 1,2, . . . , n − 1, (67)

An interesting way to confirm or to refute this hypothesis could be to study the inte-
gral from exercise no. 66 for rational values of p.

Finally, we should say that above results seem to be novel though we do not know
for sure. For example, Mark Coffey [18] already remarked that constants γ1(1/3) and
γ1(2/3) may be separately written in terms of γ1 [18, p. 1830, Collolary 1]; however,
he did not provide explicit expressions for them.45 In the same work, one may also
find several formulas for the differences of Stieltjes constants expressed in terms of
the second-order derivatives of the Hurwitz ζ -function, as well as several series and
integral representations for them.

45Moreover, the exact determination of γ1(1/3) and γ1(2/3) is based on a particular case of (3.28) at
k = 1; such a case is given by (3.54) [18]. The latter equation, as we already noticed in footnote 42,
contains an error.
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Hint: The technique of proof is similar to that from the preceding exercise. First, by
using geometric series expansions, one can show that the following integral may be
expressed by means of alternating Hurwitz ζ -functions

∞̂

0

xa shbx

chx
dx = Γ (a + 1)

2a+1

{
η

(
a + 1,

1

2
− b

2

)
− η

(
a + 1,

1

2
+ b

2

)}
,

a > −2, |Reb| < 1, and hence, in virtue of (4), by means of ordinary Hurwitz
ζ -functions. Differentiating the above integral with respect to a, and then, letting
a → −1, yields

∞̂

0

shbx

x chx
lnx dx

= 1

2

{
ζ ′′
(

0,
1

2
+ b

2

)
− ζ ′′

(
0,

1

2
− b

2

)}
+ ζ ′′

(
0,

1

4
− b

4

)
− ζ ′′

(
0,

1

4
+ b

4

)

+ 3b

2
ln2 2 + γ b ln 2 + 2 ln 2 · lnΓ

(
1

2
+ b

2

)
− (γ + ln 2) ln cos

πb

2

− ln 2 · lnπ + (γ + 2 ln 2)

{
(1 − b) ln 2 + 2 ln sin

(
π

4
− πb

4

)}
,

where derivatives of the Hurwitz ζ -function are taken with respect to its first argu-
ment and where |Reb| < 1. Now, the derivative of the latter integral with respect
to b coincides, at b = m/n, with Malmsten’s integral from no. 3-b. Writing 2m − n

instead of m, and then simplifying the formula from no. 3-b for a = 0, b = 1 and
p = (2m − n)/n, produces the final result.

65* Prove that the following integral may be evaluated by means of generalized
Stieltjes constants

∞̂

0

shpx · lnx

chx
dx = 1

2

{
π(γ + ln 2) tg

πp

2

− (γ + 2 ln 2)

[
Ψ

(
1

4
+ p

4

)
− Ψ

(
1

4
− p

4

)]

+ γ1

(
1

2
− p

2

)
− γ1

(
1

2
+ p

2

)
− γ1

(
1

4
− p

4

)
+ γ1

(
1

4
+ p

4

)}
,

where |Rep| < 1. Note that if p is rational, then γ1(1/2−p/2)−γ1(1/2+p/2) may
be expressed in terms of the Γ -function (see no. 63-b.1). This integral may be also
important for the closed-form determination of the first generalized Stieltjes constant
(see the Nota bene of the next exercise).
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Hint: See previous exercises. At the final stage, use the reflection formula for the
Ψ -function.

66* Analogously to the previous exercise, prove that for |Rep| < 1

∞̂

0

(chpx − 1) lnx

shx
dx = (γ + ln 2) ·

{
Ψ

(
1

2
+ p

2

)
+ ln 2 − π

2
tg

πp

2

}

+ γ 2 + γ1 − 1

2
γ1

(
1

2
+ p

2

)
− 1

2
γ1

(
1

2
− p

2

)
.

Show then that this integral for p = 1
2 , 1

3 , 2
3 may be expressed in terms of elementary

functions and the Euler’s constant γ .

Nota bene: This integral plays an important role for the second conjecture (67) con-
cerning the first generalized Stieltjes constant (see exercise no. 64). The formula
given above is derived by making use of geometric series, which lead to the Hur-
witz ζ -function (see the hint below). It is, therefore, highly desirable to find another
method for the evaluation of this integral. One of the possibilities could be the appli-
cation of the Mittag–Leffler theorem to the integrand. Accordingly, we may expand
for any −1 < p < 1

chpz − 1

sh z
= 2z

∞∑
n=1

(−1)n
cospπn − 1

z2 + π2n2
, z ∈C, z �= πni, n ∈ Z

see e.g. [23, no. 27.10.2]. But the performance of term-by-term integration results in
a divergent series

∞̂

0

(chpx − 1) lnx

shx
dx = 2

∞∑
n=1

(−1)n(cospπn − 1)

∞̂

0

x lnx

x2 + π2n2
dx

︸ ︷︷ ︸
∞

= · · · .

One can also try to evaluate a similar integral

∞̂

0

(chpx − 1)xa−1

shx
dx = 2

∞∑
n=1

(−1)n(cospπn − 1)

∞̂

0

xa

x2 + π2n2
dx

︸ ︷︷ ︸
1
2 πana−1 sec 1

2 πa

= πa sec
πa

2

∞∑
n=1

(−1)n
cospπn − 1

n1−a
. (68)

The equality holds for −1 < p < 1 and a ∈ (−1,+1), but it can be analytically
continued for a /∈ (−1,+1). The integral is the analytic continuation of the sum
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for a � 1, while the sum analytically continues the integral for a � −1. We obvi-
ously have to expect trouble with the right-hand part at a = ±1,±3,±5, . . . because
of the secant. Since when a = −1,−3,−5, . . . the sum in the right-hand side con-
verges, these points are poles of the first order for the analytic continuation of inte-
gral (68). In contrast, for a = 1,3,5, . . . , the integral on the left remains bounded,
and thus, these points are removable singularities for the right-hand side of (68). In
other words, formally

∑
(−1)n(cospπn − 1)na−1, n � 1, must vanish identically for

any odd positive a (exactly as η(1 − a), the result which has been derived by Euler,
see e.g. [20, p. 85]). Thus, the partial differentiation of the right-hand side of (68)
with respect to a at a → 1 leads to an A-summable divergent series (see [31, p. 7]).
When using divergent series methods, the major difficulty consists in the evaluation
of
∑

(−1)n(cospπn − 1) ln2 n, n � 1, the series
∑

(−1)n(cospπn − 1) lnn, n � 1,
being easily reducible to 1

2Ψ ( 1
2 + 1

2p) − 1
4π tg 1

2πp + 1
2γ + ln 2 (see e.g. [40, p. 58,

Eq. (72)] or differentiate no. 20-b with respect to ϕ).
Another approach consists in the use either of polylogarithms, or of the Lerch

transcendent or of the hypergeometric function, but the price will be a high transcen-
dence. The search for more suitable analytic continuations of (68) remains, therefore,
relevant.

Hint: Differentiate formula (52) with respect to a, and then, let a → 0. In order to
perform the latter limiting procedure, expand ζ -functions in the Laurent series (as
we did in no. 63). The final result is obtained by using the reflection formula for the
Ψ -function. As regards the values of the integral at p = 1

2 , 1
3 , 2

3 , use results obtained
in exercise no. 64.

67* In exercises no. 63–66, we saw that there is a connection between Malmsten’s
integrals of the first order and the first Stieltjes constants. Prove now that

∞̂

0

sh2 px · lnx

sh2 x
dx

= 1

2

{
lnπ − ln sinπp + p

[
γ1(p) − γ1(1 − p)

]− (γ + ln 2)(1 − πp ctgπp)
}

for |Rep| < 1, and therefore, such a connection exists also between Malmsten’s in-
tegrals of the second order and the first Stieltjes constants.

Hint: From elementary analysis, it is well known that

1

y2 − 2y + 1
=

∞∑
n=1

nyn−1, |y| < 1.

By putting in the latter expansion y = e−2x , one can easily show that

∞̂

0

xa · e−px

sh2 x
dx = 4Γ (a + 1)

∞∑
n=1

n

(2n + p)a+1
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= Γ (a + 1)

2a−1

{
ζ

(
a,

p

2

)
− p

2
ζ

(
a + 1,

p

2

)}
, a > 1, Rep > −2

and hence,

∞̂

0

xa chpx

sh2 x
dx = Γ (a + 1)

2a

{
ζ

(
a,

p

2

)
− p

2
ζ

(
a + 1,

p

2

)
+ ζ

(
a,−p

2

)

+ p

2
ζ

(
a + 1,−p

2

)}
, a > 1, |Rep| < 2.

Furthermore, it can be analogously shown that

∞̂

0

xa sh2 px

sh2 x
dx = Γ (a + 1)

2a+1

{
ζ(a,p) − pζ(a + 1,p) + ζ(a,−p)

+ pζ(a + 1,−p) − 2ζ(a)
}
, a > −1, |Rep| < 1.

Differentiating this integral with respect to a, and then letting a → 0, as well as using
(65), produces the wanted result. By the way, by putting p = m/n, and by using
no. 63-b.2, we arrive at the result obtained in exercise no. 11-b.
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(1894)

38. Liang, J.J.Y., Todd, J.: The Stieltjes constants. J. Res. Natl. Bur. Stand. B, Math. Sci. 76B(3–4), 161–
178 (1972)

39. Lindelöf, E.: Le calcul des résidus et ses applications à la théorie des fonctions. Gauthier-Villars,
Imprimeur Libraire du Bureau des Longitudes, de l’École Polytechnique, Quai des Grands-Augustins,
55, Paris (1905)

40. Malmsten, C.J., Almgren, T.A., Camitz, G., Danelius, D., Moder, D.H., Selander, E., Grenander,
J.M.A., Themptander, S., Trozelli, L.M., Föräldrar, Ä., Ossbahr, G.E., Föräldrar, D.H., Ossbahr, C.O.,

http://arxiv.org/abs/arXiv:0905.1111v2
http://runeberg.org/nf


Malmsten’s integrals and their evaluation by contour integration 109

Lindhagen, C.A., Moder, D.H., Syskon, Ä., Lemke, O.V., Fries, C., Laurenius, L., Leijer, E., Gyllen-
berg, G., Morfader, M.V., Linderoth, A.: Specimen analyticum, theoremata quædam nova de integral-
ibus definitis, summatione serierum earumque in alias series transformatione exhibens (Eng. trans.:
“Some new theorems about the definite integral, summation of the series and their transformation into
other series”) [Dissertation, in 8 parts]. Upsaliæ, excudebant Regiæ academiæ typographi. Uppsala,
Sweden (April–June 1842)

41. Malmstén, C.J.: De integralibus quibusdam definitis seriebusque infinitis (Eng. trans.: “On some def-
inite integrals and series”). J. Reine Angew. Math., 38, 1–39 (1849) [work dated May 1, 1846]

42. Markushevich, A.I.: Theory of Functions of a Complex Variable, 2nd edn. AMS Chelsea/American
Mathematical Society, New York/Providence (2005) [in 3 volumes]

43. McLachlan, N.W.: Complex Variable and Operational Calculus with Technical Applications. Cam-
bridge University Press, London (1942)

44. Medina, L.A., Moll, V.H.: A class of logarithmic integrals. Ramanujan J. 20(1), 91–126 (2009)
45. Miller, J., Adamchik, V.S.: Derivatives of the Hurwitz Zeta function for rational arguments. J. Com-

put. Appl. Math. 100, 201–206 (1998)
46. Moll, V.H.: The integrals in Gradshteyn and Ryzhik. Part 1: A family of logarithmic integrals. Scentia,

Ser. A, Math. Sci. 14, 1–6 (2007)
47. Moll, V.H., Amdeberhan, T.: Contemporary Mathematics: Tapas in Experimental Mathematics. Amer-

ican Mathematical Society, Providence (2007)
48. Nan-You, Z., Williams, K.S.: Some results on the generalized Stieltjes constant. Analysis 14, 147–162

(1994)
49. Nielson, N.: Handbuch der Theorie der Gammafunktion. Teubner, Leipzig (1906)
50. Ostrowski, A.M.: On some generalisations of the Cauchy–Frullani integral. Proc. Natl. Acad. Sci.

USA 35, 612–616 (1949)
51. Poisson, S.D.: Second mémoire sur la distribution de l’électricité à la surface des corps conducteurs

(lu le 6 septembre 1813). Mémoires de la classe des sciences mathématiques et physiques de l’Institut
Impérial de France, partie II Chez Fermin Didot, Imprimeur de l’Institut Impérial de France et Libraire
pour les mathématiques, pp. 163–274, rue Jacob, no. 24, Paris, France (1814)

52. Poisson, S.D.: Suite du mémoire sur les intégrales définies, inséré dans les deux précédents volumes
de ce journal. J. Éc. Polytech. XI(18), 295–341 (1820)

53. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series, vols. I–IV. Gordon and Breach,
New York (1992)

54. Riemann, B.: Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse. Monatsberichte der
Königlich Preußischen Akademie der Wissenschaften zu Berlin, pp. 136–144 (1859)

55. Schlömilch, O.: Uebungsaufgaben für Schüler. Lehrsatz. Grunert Arch. Math. Phys. XII(IV), 415
(1849), part XXXV

56. Schlömilch, O.: Ueber eine Eigenschaft gewisser Reihen. Z. Math. Phys. III, 130–132 (1858)
57. Sloane, N.J.A.: Sequence A115252. The On-Line Encyclopedia of Integer Sequences (2006).

http://oeis.org/A115252
58. Smirnov, V.I.: A Course of Higher Mathematics. vol. I–V. Pergamon, London (1964)
59. Spiegel, M.R.: Theory and Problems of Complex Variables with an Introduction to Conformal Map-

ping and Its Application. McGraw-Hill, New York (1968)
60. Sveshnikov, A.G., Tikhonov, A.N.: Theory of Functions of a Complex Variable. Nauka, Moscow

(1967). [in Russian]
61. Bierens de Haan, D.: Tables d’intégrales définies. Verhandelingen der Koninklijke Nederlandse

Akademie van Wetenschappen, Deel IV, Amsterdam (1858)
62. Bierens de Haan, D.: Nouvelles tables d’intégrales définies. P. Engels, Libraire Éditeur, Leide (1867)
63. Gårding, L.: Mathematics and Mathematicians: Mathematics in Sweden Before 1950. American

Mathematical Society/London Mathematical Society, Providence (1994)
64. Le Gendre, A.M.: Exercices de calcul intégral sur divers ordres de transcendantes et sur les quadra-

tures Tomes I–III. Mme Ve Courcier, Imprimeur–Libraire pour les Mathématiques, rue du Jardinet,
no. 12, quartier Saint-André-des-Arc, Paris (1811–1817)

65. Titchmarsh, E.C.: The Theory of Functions, 2nd edn. Oxford University Press, Oxford (1939)
66. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. Clarendon, Oxford (1986)
67. Vardi, I.: Integrals, an introduction to analytic number theory. Am. Math. Mon. 95, 308–315 (1988)
68. Vilceanu, R.O.: An application of Dirichlet L-series to the computation of certain integrals. Bull.

Math. Soc. Sci. Math. Roum. 51(99)(2), 159–173 (2008)

http://oeis.org/A115252


110 I.V. Blagouchine

69. Volkovyskii, L.I., Lunts, G.L., Aramanovich, I.G.: A Collection of Problems on Complex Analysis.
Pergamon, London (1965)

70. Weisstein, E.W.: Vardi’s integral. From MathWorld—a Wolfram web resource (2006). http://
mathworld.wolfram.com/VardisIntegral.html

71. Whittaker, E., Watson, G.N.: A Course of Modern Analysis. an Introduction to the General Theory
of Infinite Processes and of Analytic Functions, with an Account of the Principal Transcendental
Functions, 3rd edn. Cambridge University Press, Cambridge (1920)

http://mathworld.wolfram.com/VardisIntegral.html
http://mathworld.wolfram.com/VardisIntegral.html


Ramanujan J (2017) 42:777–781
DOI 10.1007/s11139-015-9763-z

ERRATUM

Erratum and Addendum to: Rediscovery of Malmsten’s
integrals, their evaluation by contour integration
methods and some related results [Ramanujan J. (2014),
35:21–110]

Iaroslav V. Blagouchine1,2

Published online: 25 October 2016
© Springer Science+Business Media New York 2016

Erratum to: Ramanujan J (2014) 35:21–110
DOI 10.1007/s11139-013-9528-5

Addendum to Section 2.2

The historical analysis of functional Eqs. (20)–(22) on pp. 35–37 is far fromexhaustive.
In order to give a larger vision of this subject, several complimentary remarks may be
needed.

First, on p. 37, lines 1–5, the text “By the way, the above reflection formula (21) for
L(s)was also obtained by Oscar Schlömilch; in 1849 he presented it as an exercise for
students [55], and then, in 1858, he published the proof [56]. Yet, it should be recalled
that an analog of formula (20) for the alternating…”may be replaced by the following
one: “By the way, between 1849 and 1858, the above reflection formula for L(s) was
also obtained by several other mathematicians, including Oscar Schlömilch [55, 56],
Gotthold Eisenstein [73, 84], and Thomas Clausen [75].1 Yet, it should be noted that
formula (20) itself was rigorously proved by Kinkelin a year before Riemann [79,
p. 100], [78], and its analog for the alternating…”

1 In 1849, Schlömilch presented the theorem as an exercise for students [55]. In 1858, Clausen [75]
published the proof to this exercise. The same year, Schlömilch published his own proof [56]. Eisenstein
did not publish the proof, but left some drafts dating back to 1849, see e.g. [73, 84].

The online version of the original article can be found under doi:10.1007/s11139-013-9528-5.
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Second, on p. 37, in formula (22), the confusing part “n = 1, 2, 3, . . . ” should be
replaced by “n ∈ R”. In fact, by comparing values of η(1 − n) to η(n) at positive
integers and by noticing that both of them contain the same Bernoulli numbers, Euler
deduced Eq. (22). After that, he carried out a number of complimentary verifications,
which suggested that Eq. (22) should hold not only for integer values of n, but also
for fractional and continuous values of n. Whence, he conjectured that (22) should
be true for any value of argument, including continuous values of n. In particular, on
p. 94 of [20], Euler wrote: “Par cette raison j’hazarderai la conjecture suivante, que
quelque soit l’exposant n, cette equation a toujours lieu :

1 − 2n−1 + 3n−1 − 4n−1 + 5n−1 − 6n−1 + . . .

1 − 2−n + 3−n − 4−n + 5−n − 6−n + . . .

= −1 · 2 · 3 · · · (n − 1) (2n − 1)

(2n−1 − 1) π
cos

πn

2
.”

The latter is our Eq. (22) and is also equivalent to (20). By the way, Hardy’s exposition
of Euler’s achievements, which we cited in footnote 15, Ref. [31, pp. 23–26], is also
far from exhaustive. For instance, Hardy did not mention the fact that Euler have
conjectured that formula (22) remains true for any value of n. Moreover, Hardy says
that it was comparatively recently that it was observed, first by Cahen and then by
Landau, that the reflection formulas for L(s) and η(s) both stand in Euler’s paper
written in 1749. This is, however, not true. Thus, Malmsten in 1846 remarked [40,
p. 18] that (21) were obtained by Euler by induction, and Hardy cited this work of
Malmsten. Unfortunately, Hardy did not notice that Malmsten also quoted Euler.

Third, on p. 37, after the last sentence in the first paragraph ending by “…requires
the notion of analytic continuation.”, the following footnote may be added

“An alternative historical analysis of functional Eqs. (20)–(21) in the context
of contributions of various authors may be found in [85], [31, p. 23], [84],
[82, p. 4], [78, p. 193], [74, pp. 326–328], [83, p. 298], [73]. Note, however, that
Butzer et al.’s statement [74, p. 328] “Malmstén included the functional equation
without proof” is rather incorrect. Thus, André Weil [84, p. 8] points out that
“Malmstén included the proof in a long paper written in May 1846”. Moreover,
our investigations show that this proof was not only included in his paper [41]
written in 1846, but also was present in an earlier work [40] published in 1842.
By the way, Malmsten remarked that reflection formulas of such kind were first
announced by Euler in 1749, the fact which was not mentioned by Schlömilch
[55, 56], nor by Clausen [75], nor by Kinkelin [79], nor by Riemann [54].”

Addendum to Section 4.1.2, Exercise no. 18

Results of this exercise also permit to evaluate some very curious integrals containing
cos ln ln x and sin ln ln x in the numerator. Putting in the last unnumbered equation in
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Exercise no. 18 on p. 66 a = iα, α ∈ R, and b = 1, we have

∞∫

0

cos(α ln x)

chx
dx = 2

∞∫

1

cos(α ln ln x)

1 + x2
dx

= −αIm

[
Γ (iα)

22iα

{
ζ
(
1 + iα, 1/4

) − 2iα
(
21+iα − 1

)
ζ(1 + iα)

}]
,

∞∫

0

sin(α ln x)

chx
dx = 2

∞∫

1

sin(α ln ln x)

1 + x2
dx

= αRe

[
Γ (iα)

22iα

{
ζ
(
1 + iα, 1/4

) − 2iα
(
21+iα − 1

)
ζ(1 + iα)

}]
,

These integrals are, in some sense, complimentary to basic Malmsten’s integrals (1)–
(2), whichwere evaluated in Sect. 3.4 and 4.1.2, no. 18-g, and readily permit to evaluate
integrals

∞∫

0

lnnx

chx
dx = 2

∞∫

1

lnn ln x

1 + x2
dx = 2

1∫

0

lnn ln 1
x

1 + x2
dx , n = 1, 2, 3, . . .

in terms of Stieltjes constants (first two such expressions were given in Exercises
no. 18-g and 18-h). It is also interesting that right parts of both expressions contain
ζ(1+iα), whichwas found to be connectedwith the nontrivial zeros of the ζ -function.2

Addendum to Section 4.2, Exercise no. 29

In right parts of formulas (d)–(g), it may be more preferable to have ln(1+√
2) rather

than ln(2 ± √
2)

(d)

1∫

0

ln ln 1
x

1 + √
2 x + x2

dx =
∞∫

1

ln ln x

1 + √
2 x + x2

dx

= π

4
√
2

{
5 ln π + 4 ln 2 − 2 ln(1 + √

2) − 8 lnΓ

(
3

8

)}
,

(e)

1∫

0

ln ln 1
x

1 − √
2 x + x2

dx =
∞∫

1

ln ln x

1 − √
2 x + x2

dx

= π

4
√
2

{
7 ln π + 6 ln 2 + 2 ln(1 + √

2) − 8 lnΓ

(
1

8

)}
,

2 Estimation of
∣∣ζ(1 + iα)

∣∣ was found to be connected with Reρ, where ρ are the zeros of ζ(s) in the
critical strip 0 � Res � 1, see e.g. [80, p. 128].
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(f)

1∫

0

x ln ln 1
x

1 + √
2 x2 + x4

dx =
∞∫

1

x ln ln x

1 + √
2 x2 + x4

dx

= π

8
√
2

{
5 ln π + 3 ln 2 − 2 ln(1 + √

2) − 8 lnΓ

(
3

8

)}
,

(g)

1∫

0

x ln ln 1
x

1 − √
2 x2 + x4

dx =
∞∫

1

x ln ln x

1 − √
2 x2 + x4

dx

= π

8
√
2

{
7 ln π + 3 ln 2 + 2 ln(1 + √

2) − 8 lnΓ

(
1

8

)}
.

Addendum to Section 4.5, Exercise no. 62-b

On p. 96, in Exercise no. 62-b, in the unnumbered formula after Eq. (56), in the first
line the last term

−1

2

n−1∑
l=1

αl,nςl,n

may be removed. Strictly speaking, the actual expression for
∑

Υk,n lnΓ
( k
n

)
is cor-

rect. However, because of the symmetry, the function ςl,n identically vanishes for any
integer l = 1, 2, . . . , n − 1, and hence, so does the last term in the first line of this
formula.

Some minor corrections and additions

• p. 42, line 20: “has no branch points.” should read “has no branch points except
at poles of Γ (z).”

• p. 42, line 27: “points at all, which allows” should read “points at all in the right
half–plane, which allows”.

• p. 66, in Nota Bene of exercise no. 19: “derived byMalmsten in [41, unnumbered”
should read “derived by Malmsten in [40, p. 24, Eq. (37)], [41, unnumbered”.

• p. 68, first line: “no. 21-e” should read “no. 21-d”.
• p. 73, last line, “|Rer | < 2π” should read “|Imr | < 2π”.
• p. 82, line 7, “no. 39-c is given” should read “no. 39-e is given”.
• p. 83, exercise no. 40: formula given in exercise no. 40-b, as well as formula (55),
were also obtained by Nørlund in [81, p. 107].

• p. 97, footnote 40 “formula (c) was” should read “formula (b.2) was”.3

3 It may also noted that in a later work [72, pp. 542–543], we showed that (b.1), which is a shifted version
of (b.2), was already known to Malmsten in 1846.
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• p. 100, exercise no. 64: closed-form expressions equivalent to those we gave for
γ1(1/2), γ1(1/4), γ1(3/4) and γ1(1/3) were also obtained by Connon in [76, pp. 1,
50, 53, 54–55], [77, pp. 17–18].
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