References beginning with L
J. M. F. Labastida,
Topological quantum field theory: a progress report,
hep-th/9511037 preprint, November 1995.
J. M. F. Labastida,
Chern-Simons Gauge Theory: Ten Years After,
Santiago preprint, US-FT-7-99, April 1999. See also
hep-th/9905057.
J. M. F. Labastida,
Knot theory from a Chern-Simons gauge theory point of view,
Santiago preprint, US-FT-3/00, February 2000. See also
hep-th/0002221.
J. M. F. Labastida,
Knot invariants and Chern-Simons theory,
Santiago preprint, July 2000,
arXiv:hep-th/0007152.
J. M. F. Labastida and E. Pérez,
Kontsevich integral for Vassiliev invariants from Chern-Simons
perturbation theory in the light-cone gauge,
Journal of Mathematical Physics 39 (1998) 5183-5198. See also
hep-th/9710176.
J. M. F. Labastida and E. Pérez,
Gauge-Invariant Operators for Singular Knots in Chern-Simons Gauge
Theory,
Nuclear Physics B, 527 (1998) 499. See also
hep-th/9712139.
J. M. F. Labastida and
E. Pérez,
Combinatorial formulae for Vassiliev invariants from Chern-Simons
gauge theory,
CERN preprint CERN-TH/98-193 and Universidade de Santiago de Compostela
preprint US-FT-11/98. See also
hep-th/9807155.
J. M. F. Labastida and
E. Pérez,
Vassiliev invariants in the context of Chern-Simons gauge
theory,
Universidade de Santiago de Compostela preprint US-FT-18/98. See also
hep-th/9812105.
Pascal Lambrechts, Victor
Tourtchine, Ismar Volic.
The rational homology of spaces of long knots in codimension >2,
arXiv:math.AT/0703649 preprint, March 2007.
S. K. Lando,
On primitive elements in the bialgebra of chord diagrams,
Max-Planck-Institut Bonn preprint 94-47, September 1995.
S. K. Lando,
On a Hopf algebra in graph theory,.
J. of Comb. Theory, Series B, 80 (2000), no. 1, 104-121.
Lando, S. J-invariants of ornaments and decorated chord diagrams,
Funct. Anal. and its Appl., to appear
J. Lannes,
Sur les invariants de Vassiliev de degré inférieur ou
égal à 3,
L'Ens. Math. 39 (1993), 295-316.
T. Q. T. Le,
An invariant of integral homology 3-spheres which is universal
for all finite type invariants,
in Solitons, geometry and topology: on the crossroad,
(V. Buchstaber and S. Novikov, eds.) AMS Translations Series 2,
Providence, arXiv:q-alg/9601002.
T. Q. T. Le,
On denominators of the Kontsevich integral and the universal
perturbative invariant of 3-manifolds,
Inv. Math. 135-3 (1999) 689-722, arXiv:q-alg/9704017.
T. Q. T. Le,
On perturbative
invariants of rational homology 3-spheres,
arXiv:math.GT/9802032 preprint, February 1998.
T. Q. T. Le,
The Lê-Murakami-Ohtsuki invariant,
SUNY at Buffalo preprint, June 1999.
T. Q. T. Le,
Finite type invariants of 3-manifolds.
arXiv:math.GT/0507145.
T. Q. T. Le, H. Murakami,
J. Murakami and T. Ohtsuki,
A three-manifold invariant derived from the universal
Vassiliev-Kontsevich invariant,
Proc. Japan Acad. 71 Ser. A (1995) 125-127.
T. Q. T. Le, H. Murakami,
J. Murakami and T. Ohtsuki,
A three-manifold invariant via the Kontsevich integral,
Max-Planck-Institut Bonn preprint, 1995.
T. Q. T. Le and J. Murakami,
On Kontsevich's integral for the HOMFLY polynomial and
relations of multiple zeta numbers,
Topology and its Applications 62 (1995) 193-206.
T. Q. T. Le and J. Murakami,
Kontsevich integral for Kauffman polynomial,
Max-Planck-Institut Bonn preprint 93-33, 1993.
T. Q. T. Le and J. Murakami,
Representation of the category of tangles by Kontsevich's
iterated integral,
Comm. Math. Phys. 168 (1995) 535-562.
T. Q. T. Le and J. Murakami,
The universal Vassiliev-Kontsevich invariant for framed oriented links,
Compositio Math. 102 (1996), 41-64,
arXiv:hep-th/9401016.
T. Q. T. Le and J. Murakami,
Parallel version of the universal Vassiliev-Kontsevich invariant,
J. Pure and Appl. Algebra 121 (1997) 271-291.
T. Q. T. Le, J. Murakami and T. Ohtsuki,
On a universal quantum invariant of 3-manifolds,
Topology 37-3 (1998) 539-574, arXiv:q-alg/9512002.
C. Lescop,
Introduction to the Kontsevich integral of framed tangles,
CNRS Institut Fourier preprint, June 1999.
C. Lescop,
About the uniqueness and the denominators of the Kontsevich
Integral,
CNRS Institut Fourier preprint, April 2000. See also
math.GT/0004094.
C. Lescop,
On configuration space integrals for links,
Invariants of knots and 3-manifolds (Kyoto 2001), Geometry and
Topology Monographs 4 183-199, arXiv:math.GT/0211062.
C. Lescop,
On the Kontsevich-Kuperberg-Thurston construction of a
configuration-space invariant for rational homology 3-spheres,
CNRS Institut Fourier preprint, October 2004, arXiv:math.GT/0411088.
C. Lescop,
Splitting formulae for the Kontsevich-Kuperberg-Thurston
invariant for rational homology 3-spheres,
CNRS Institut Fourier preprint, October 2004, arXiv:math.GT/0411431.
J. Levine,
Pure braids, a new subgroup of the mapping class group and
finite-type invariants,
Brandeis University preprint, September 1998. See also
math.GT/9712221.
J. Levine,
Homology cylinders: an expansion of the mapping class group,
Brandeis University preprint, October 2000, arXiv:math.GT/0010247.
B-H. Li and H-W. Sun,
Exact number of chord diagrams and an estimation of the number of
spine diagrams of order
,
Ch. Sci. Bull., 42-9 (1997) 705-718.
J. Lieberum,
Chromatic weight systems and the corresponding knot invariants,
Math. Ann. 317-3 (2000) 459-482,
arXiv:q-alg/9701013.
J. Lieberum,
On Vassiliev invariants not coming from semisimple Lie algebras,
Jour. of Knot Theory and its Ramifications 8-5 (1999) 659-666,
arXiv:q-alg/9706005.
J. Lieberum,
The number of independent Vassiliev invariants in the Homfly and
Kauffman polynomials,
Documenta Mathematica 5 (2000) 275-299,
arXiv:math.QA/9806064.
J. Lieberum,
Invariants de Vassiliev pour les entrelacs dans
et dans les
variétés de dimension trois,
Ph.D. thesis, University of Strasbourg, September 1998.
J. Lieberum,
A skein module of links in cylinders over surfaces,
Int. Jour. of Math. and Math. Sci. 32-9 (2002) 515-554,
arXiv:math.QA/9911174.
J. Lieberum,
The LMO-invariant of 3-manifolds of rank one and the Alexander
polynomial,
Math. Ann. 318-4 (2000) 761-776,
arXiv:math.QA/0002040.
J. Lieberum,
Universal Vassiliev invariants of links in coverings of
3-manifolds,
University of Basel preprint, April 2001,
arXiv:math.QA/0105019.
J. Lieberum,
The Drinfeld associator of
,
University of Basel preprint, April 2002, arXiv:math.QA/0204346.
X-S. Lin,
Vertex models, quantum groups and Vassiliev's knot invariants,
Columbia University preprint, 1991.
X-S. Lin,
Finite type invariants of 3-manifolds,
Topology 33-1 (1994) 45-71.
X-S. Lin,
Milnor link invariants are all of finite type,
Columbia University preprint, 1992.
X-S. Lin,
Power series expansions and invariants of links,
in Geometric topology (proceedings of the Georgia international
topology conference), (W. H. Kazez, ed.), 184-202, Amer. Math.
Soc. and International Press, Providence, 1997.
X-S. Lin,
Knot invariants and iterated integrals,
Columbia University preprint, 1994.
X-S. Lin,
Braid algebras, trace modules and Vassiliev invariants,
Columbia University preprint, 1994.
X-S. Lin,
Invariants of Legendrian knots,
Columbia University preprint, 1995.
X-S. Lin,
Finite type invariants of integral homology spheres: a
survey,
in Knot theory (V. F. R. Jones, J. Kania-Bartoszynska,
J. H. Przytycki, P. Traczyk, and V. G. Turaev, eds.), Banach Center
Publications 42 205-220, Warsaw 1998. See also
q-alg/9510003.
X-S. Lin,
Finite type link invariants and the non-invertibility of links,
arXiv:q-alg/9601019.
Published in Math. Res. Lett. 3-3 (1996) 405-417 under the title
Finite type link invariants and the invertibility of links.
X-S. Lin,
Knot energies and knot invariants,
Chaos, Solitons and Fractals 9 (1998) 645-655,
arXiv:q-alg/9604018.
X-S. Lin,
Melvin-Morton conjecture: a survey,
Proceedings of ICCM 98, to appear.
X-S. Lin,
Link-homotopy invariants of finite type,
University of California at Riverside preprint, December 2000,
arXiv:math.GT/0012095.
Published in l'Enseignement Mathematique, 47 (2001), pp. 315-327 under the
title Finite type link-homotopy invariants.
X-S. Lin and Z. Wang,
Integral geometry of plane curves and knot invariants,
Jour. of Diff. Geom. 44-1 (1996) 74-95,
arXiv:dg-ga/9411015.
X-S. Lin and Z. Wang,
On Ohtsuki's invariants of integral homology 3-spheres, I,
Acta Math. Sinica (Ser. B) 15-3 (1999) 293-316,
arXiv:q-alg/9509009.
X-S. Lin and Z. Wang,
Fermat limit and congruence of Ohtsuki invariants,
Proceedings of the Kirbyfest, Geometry and Topology Monographs 2 321-333,
arXiv:math.GT/9810147.
R. Longoni,
Sviluppo perturbativo delle teorie di campo topologiche di tipo
BF e invarianti dei nodi,
Master's thesis (in Italian).
Sergei DUZHIN
2013-07-04