Задачи по анализу, листок 16

Срок сдачи: 24 октября 2018 г.

Основные задачи (2 балла каждая)

- 1) Опишите все линейные ограниченные нормальные операторы T на гильбертовом пространстве H, такие, что оператор $\sum_{k=0}^{\infty} \frac{1}{k!} T^k$ унитарен. Здесь 0! = 1 и T^0 тождественный оператор.
- 2) Число $\lambda \in \mathbb{C}$ и функция $f \in L^2(\mathbb{R})$ удовлетворяют равенству $\hat{f} = \lambda f$. Найдите множество всех возможных значений λ .
- 3) Рассмотрим оператор $T: f \mapsto z^2 f$ в $L^2(\mathbb{T})$ на единичной окружности \mathbb{T} . Докажите, что оператор $T \oplus T \oplus \ldots$ в пространстве $L^2(\mathbb{T}) \oplus L^2(\mathbb{T}) \oplus \ldots$ унитарно эквивалентен оператору $f \mapsto f(x-1)$ в пространстве $L^2(\mathbb{R})$.
- 4) Докажите, что оператор $f\mapsto \int_{\mathbb{R}} f(x) \frac{\sin(x-t)}{x-t}\,dx$ на пространстве $L^2(\mathbb{R})$ корректно определен, самосопряжен и не компактен. Найдите спектр этого оператора.
- 5) Постройте функцию f со свойством $|f(x)| \geqslant e^x, x \in \mathbb{R}$, такую, что

$$\varphi \mapsto \lim_{n \to +\infty} \int_{-n}^{n} f(x)\varphi(x) dx$$

задает распределение медленного роста.

6) Гильбертово пространство состоит из целых функций f со свойством

$$||f||^2 = \int_{\mathbb{C}} |f(z)|^2 e^{-|z|^2} dA(z) < +\infty,$$

где A обозначает меру Лебега на комплексной плоскости $\mathbb C$. Постройте ортонормированный базис в этом пространстве, состоящий из многочленов.

Дополнительная задача (сдается после основных, 8 баллов)

7) Пусть $f: \mathbb{R} \mapsto \mathbb{R}$ — функция с носителем на $[0, +\infty)$ такая, что

$$\sup_{x>0} \int_{x}^{x+1} |f(t)|^{2} dt < +\infty, \qquad \sum_{n\geqslant 0} \int_{n}^{n+2} |g(t) - \langle g \rangle_{n}|^{2} dt < +\infty,$$

где $g:t\mapsto \int_0^t f(s)\,ds$ и $\langle g\rangle_n=\frac{1}{2}\int_n^{n+2}g(s)\,ds$. Докажите, что $\hat{f}(x)/\sqrt{x^2+1}\in L^2(\mathbb{R})$.