This preprint was accepted July 17, 2017
АННОТАЦИЯ: Пусть $\mathcal{O}\subset\mathbb{R}^d$ --- ограниченная область с границей класса $C^{1,1}$. В пространстве $L_2(\mathcal{O};\mathbb{C}^n)$ рассматривается самосопряженный матричный эллиптический дифференциальный оператор $B_{D,\varepsilon}$, $0<\varepsilon\leqslant1$, второго порядка при условии Дирихле на границе. Старшая часть оператора задана в факторизованной форме. Оператор включает члены первого и нулевого порядков. Оператор $B_{D,\varepsilon}$ положительно определен; его коэффициенты периодичны и зависят от $\mathbf{x}/\varepsilon$. Изучается поведение при $\varepsilon\rightarrow 0$ операторной экспоненты $e^{-B_{D,\varepsilon}t}$, $t>0$. Получены аппроксимации для $e^{-B_{D,\varepsilon}t}$ по операторной норме в $L_2(\mathcal{O};\mathbb{C}^n)$ и по норме операторов, действующих из $L_2(\mathcal{O};\mathbb{C}^n)$ в класс Соболева $H^1(\mathcal{O};\mathbb{C}^n)$. Результаты применяются к усреднению решений первой начально-краевой задачи для параболических систем.