This preprint was accepted December 11, 2009
ABSTRACT: We discuss the Kolmogorov's entropy and Sinai's definition of it; and then define a deformation of the entropy, called {\it scaling entropy}; this is also a metric invariant of the measure preserving actions of the group, which is more powerful than the ordinary entropy. To define it, we involve the notion of the $\varepsilon$-entropy of a metric in a measure space, also suggested by A.~N.~Kolmogorov slightly earlier. We suggest to replace the techniques of measurable partitions, conventional in entropy theory, by that of iterations of metrics or semi-metrics. This leads us to the key idea of this paper which as we hope is the answer on the old question: what is the natural context in which one should consider the entropy of measure-preserving actions of groups? the same question about its generalizations---scaling entropy, and more general problems of ergodic theory. Namely, we propose a certain research program, called {\it asymptotic dynamics of metrics in a measure space}, in which, for instance, the generalized entropy is understood as {\it the asymptotic Hausdorff dimension of a sequence of metric spaces associated with dynamical system.} As may be supposed, the metric isomorphism problem for dynamical systems as a whole also gets a new geometric interpretation.Key words: deformation of the entropy, asymptotic dynamics of metrics in a measure space
АННОТАЦИЯ. Мы определяем деформацию колмогоровской энтропии, как энтропия последовательности компактов с мерой, строящейся по автоморфизму с инвариантной мерой, или по фильтрации сигма-алгебр. Эта деформация, называемая масштабированной энтропией есть класс последовательностей натуральных чисел, который является метрическим инвариантом автоморфизма или соответственно фильтрации. Предполагается, что в этотм контекст -- асимптотика последоватекльности компактов, -- есть естественный контекст для энтропии и других метрических и топологических инвариантов в теории меры и в теории динамических систем.Ключевые слова: Масштабированная энтропия, динамика метрик с мерой, асимптотика компактов