Petersburg Department of Steklov Institute of Mathematics

PREPRINT 16/1997


А. Ю. Солынин

Гармоническая мера радиальных отрезков и симметризация

This preprint was accepted September, 1997.
Contact: A. Yu. Solynin

Abstract:
Let $l_k=\{\arg z=\al_k, r_1\leq|z|\leq r_2\}$, $k=1,\ldots,n$; $\al_k\in\bold R$, $0< r_1< r_2\leq1$, $E=\bigcup^n_{k=1}\,l_k$, $E^*=\{z:\arg z^n=0, r_1\leq|z|\leq r_2\}$, and let $\om_E(z)$ denote the harmonic measure of $E$ with respect to the domain $\{z:|z|<1\}\setminus E$. We prove the inequality $$ \om_E(0)\leq\om_{E^*}(0), $$ that solves the generalized problem of A. A. Gonchar on the harmonic measure of radial slits. The proofs are based on the method of dissymmetrization of V. N. Dubinin and on the method of extremal metric in the form of the problem on the extremal partition into nonoverlapping domains. Bibliography: 20 titles.

[ Full text: ( .ps.gz) ]


Back to preprints of this year (1997)
Back to all preprints
Back to the Petersburg Department of Steklov Institute of Mathematics