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1. Three forms of the inverse problem

1.1. Form I
D = {(x , y) | x2 + y2 ≤ 1} ⊂ R2 = C, γ = ∂D = {eiθ}

Λe =
√
−d2/dθ2 : C∞(γ)→ C∞(γ)

is the Dirichlet-to-Neumann operator of the Euclidean metric.
Equivalently, Λeeinθ = |n|einθ.
For a positive function a ∈ C∞(γ), the operator aΛe has a
discrete eigenvalue spectrum

Sp(aΛe) = {0 = λ0 < λ1 ≤ λ2 ≤ . . . }

that will be called the Steklov spectrum of the operator aΛe.
Inverse problem: To what extent is a positive function
a ∈ C∞(γ) determined by the Steklov spectrum Sp(aΛe)?
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Definition
Two functions a,b ∈ C∞(γ) are said to be conformally
equivalent if there exists a conformal or anticonformal
transformation Φ : D → D such that

b = a ◦ ϕ
∣∣∣∣
dϕ
dθ

∣∣∣∣
−1

, where ϕ = Φ|γ .

Here dϕ
dθ ∈ C∞(γ) is defined by ϕ∗(dθ) = dϕ

dθ dθ.
If two positive functions a,b ∈ C∞(γ) are conformally
equivalent, then Sp(aΛe) = Sp(bΛe). The converse statement
is still open

Conjecture (1)
For two positive functions a,b ∈ C∞(γ), the equality

Sp(aΛe) = Sp(bΛe)

holds if and only if these functions are conformally equivalent.
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1.2. Form II
Let Ω ⊂ R2 be a simply connected domain bounded by a
smooth closed curve ∂Ω.
λ ∈ Sp(Ω)

∆u = 0 in Ω,
∂u
∂ν

∣∣∣∣
∂Ω

= −λu|∂Ω

Inverse problem: To what extent is a simply connected smooth
bounded domain Ω ⊂ R2 determined by its Steklov spectrum?

Conjecture (2)
A simply connected smooth bounded domain Ω ⊂ R2 is
determined by its Steklov spectrum uniquely up to an isometry
of R2 endowed with the standard Euclidean metric e.
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1.3. Form III
Let g be a Riemannian metric on the unit disc D. The
Dirichlet-to-Neumann operator of the metric is defined by

Λg : C∞(γ)→ C∞(γ), Λg(f ) = −
∂u
∂ν

∣∣∣∣
γ

,

where u is the solution to the Dirichlet problem

∆gu = 0 in D, u|γ = f .

Inverse problem: to what extent is a Riemannian metric g on D
determined by the spectrum Sp(Λg)?

Conjecture (3)
A Riemannian metric on the unit disk is determined by its
Steklov spectrum uniquely up to a conformal equivalence. More
precisely, for two Riemannian metrics g and g′ on D, the
equality Sp(Λg) = Sp(Λg′) holds if and only if there exist a
diffeomorphism Ψ : D → D and function 0 < ρ ∈ C∞(D) such
that ρ|γ = 1 and g′ = ρΨ∗g.
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These three conjectures are equivalent. The first version of the
inverse problem seems easier from the analytic viewpoint since
it is a problem of recovering one function of one real argument.
On the other hand, two last versions seem, probably, more
interesting from the geometric viewpoint. In what follows, we
discuss Conjecture 1.
We are not very optimistic about the validity of the conjecture in
the general case. Nevertheless, there are many versions of the
problem which are worth of studying even if the answer is "no"
in the general case.
For example, we can ask: given 0 < b ∈ C∞(γ), how many
positive functions a ∈ C∞(γ) satisfy

Sp(aΛe) = Sp(bΛe)?

We believe that, for a generic b, such a function a is unique up
to the conformal equivalence.
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2. Zeta invariants
γ = {eiθ}. For a function a ∈ C∞(γ), let ân be its Fourier
coefficients, i.e.,

a(θ) =
∞∑

n=−∞
âneinθ.

For every integer k ≥ 1, we define

Zk (a) =
∑

j1+···+j2k=0

Nj1...j2k âj1 âj2 . . . âj2k ,

where

Nj1...j2k =
∞∑

n=−∞

[
|n(n + j1)(n + j1 + j2) . . . (n + j1 + · · ·+ j2k−1)|

− n(n + j1)(n + j1 + j2) . . . (n + j1 + · · ·+ j2k−1)
]
.

There is only a finite number of nonzero summands on the
right-hand side.
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Theorem
For a function 0 < a ∈ C∞(γ) normalized by the condition
L = 1

2π

∫ 2π
0

dθ
a(θ) = 1 and for every k ≥ 1, the invariant Zk (a) is

uniquely determined by the Steklov spectrum Sp (aΛe).
Idea of the proof:
Let {0 = λ0 < λ1 ≤ λ2 ≤ . . . } be the spectrum of the operator
aΛe. The zeta-function of the operator is defined by

ζa(s) = Tr [(aΛe)
−s] =

∞∑

n=1

λ−s
n .

The series converges for Re s > 1 and ζa(s) extends to a
meromorphic function on C with the unique simple pole at
s = 1. Moreover, ζa(s)− 2ζR(s) is an entire function, where
ζR(s) is the classical Riemann zeta-function.
We prove that for every k = 1,2, . . .

ζa(−2k) = ζa(−2k)− ζR(−2k) = Tr[(aΛe)
2k − (aDθ)2k ] = Zk (a).



Zeta invariants

Theorem
For a function 0 < a ∈ C∞(γ) normalized by the condition
L = 1

2π

∫ 2π
0

dθ
a(θ) = 1 and for every k ≥ 1, the invariant Zk (a) is

uniquely determined by the Steklov spectrum Sp (aΛe).
Idea of the proof:
Let {0 = λ0 < λ1 ≤ λ2 ≤ . . . } be the spectrum of the operator
aΛe. The zeta-function of the operator is defined by

ζa(s) = Tr [(aΛe)
−s] =

∞∑

n=1

λ−s
n .

The series converges for Re s > 1 and ζa(s) extends to a
meromorphic function on C with the unique simple pole at
s = 1. Moreover, ζa(s)− 2ζR(s) is an entire function, where
ζR(s) is the classical Riemann zeta-function.
We prove that for every k = 1,2, . . .

ζa(−2k) = ζa(−2k)− ζR(−2k) = Tr[(aΛe)
2k − (aDθ)2k ] = Zk (a).



Zeta invariants

If two positive functions a,b ∈ C∞(γ) are isospectral

Sp(aΛe) = Sp(bΛe),

then, by the theorem, we have the infinite system of algebraic
equations in Fourier coefficients

Zk (a) = Zk (b) (k = 1,2, . . . ).

Question: given 0 < b ∈ C∞(γ), how many positive functions
a ∈ C∞(γ) satisfy the system?
We believe that, for a generic function b, the solution is unique
up to the conformal equivalence. But this is not proved yet.
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3. Zeta invariants and the conformal group

Rewrite the definition of Zk (a) in the form

Zk (a) =
∑

j1,...,j2k

Zj1...j2k âj1 . . . âj2k ,

where

Zj1...j2k =

{
0, if j1 + · · ·+ j2k 6= 0,
N(j1...j2k ), if j1 + · · ·+ j2k = 0. ,

Nj1...j2k =
∞∑

n=−∞

[
|n(n + j1)(n + j1 + j2) . . . (n + j1 + · · ·+ j2k−1)|

−n(n + j1)(n + j1 + j2) . . . (n + j1 + · · ·+ j2k−1)
]
.

We know Zk (a) = Zk (b) for conformally equivalent functions a
and b.



Zeta invariants

Proposition
The conformal invariance of Zk (a) is equivalent to the relations

Zj1...j2k = Z−j1,...,−j2k ,

2k∑

α=1

(jα − 1)Zj1,...,jα−1,jα+1,jα+1,...,j2k = 0.
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4. Explicit formulas for Z1 and Z2

Z1(a) =
∑

j

Zj,−j âj â−j , Zj,−j =
∑

n

(
|n(n + j)| − n(n + j)

)
.

|n(n+j)|−n(n+j) =
{
−2n(n + j), if 0 < n < −j or − j < n < 0,
0 otherwise.

Therefore, for a positive j ,

Zj,−j = −2
−1∑

n=−j

n(n + j) = −2
j∑

n=1

n2 + 2j
j∑

n=1

n =
1
3
(j3 − j).

Similarly, Zj,−j =
1
3 |j

3 − j | for a negative j .

Edward: Z1(a) =
1
3

∞∑

j=−∞
|j3 − j | âj â−j =

2
3

∞∑

j=2

(j3 − j) âj â−j .
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Theorem
Coefficients of the form Z2(a) =

∑
Zijk` âi âj âk â` are completely

determined by the following:
(1) Zijk` = 0 for i + j + k + ` 6= 0;
(2) Zijk` are symmetric and even: Z−i,−j,−k ,−` = Zi,j,k ,`;
(3) Zijk ,−i−j−k is the piece-wise polynomial function in (i , j , k)
uniquely determined by

Zijk ,−i−j−k =






P1(i , j , k) if i ≥ 0, j ≥ 0, k ≥ 0;
P2(i , j , k) if i ≤ 0, j ≥ 0, k ≥ 0, i + j ≤ 0, i + k ≤ 0,

i + j + k ≥ 0

P1 =
1

15
σ(ijk)
(
3i5+15i4j+10i3j2+10i3jk−5i3−25i2j−10ijk+2i

)
,

P2 =
1

45
σ(jk)

(
5i5 + 25i4j + 10i3j2 + 20i3jk − 10i2j3 − 15ij4 − 20ij3k

− 4j5 − 5j4k + 10j3k2 − 5i3 − 15i2j + 5ij2 − 5j2k + 4j
)
.
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5. Some open questions

Main problem: given a positive function b ∈ C∞(γ), one has to
find all positive functions a ∈ C∞(γ) satisfying

Sp (aΛe) = Sp (bΛe).

Zeta-invariants allow us to write down the infinite system of
equations

Zk (a) = bk (k = 1,2, . . . ) (1)

The principle question on zeta-invariants: are the invariants
Zk (a) (k = 1,2, . . . ) independent of each other, i.e., does
system (1) give us infinitely many conditions on the Fourier
coefficients of a function a?
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Zk (a) = 0 (k = 1,2, . . . ) for every function a belonging to the
three-dimensional subspace

L = {a ∈ C∞(γ) | a(θ) = â0 + â1eiθ + â−1e−iθ}.

The converse statement is true in the case of k = 1 for real
functions: if Z1(a) = 0 for a real function a ∈ C∞(γ), then a ∈ L.
This is seen from Edward’s formula that takes the following
form in the case of a real function a:

Z1(a) =
2
3

∞∑

n=2

(n3 − n) |ân|2.

How does the set of all (real) functions a ∈ C∞(S) satisfying
Zk (a) = 0 for k = 2,3, . . . look like, can it be essentially
different of L?
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For a real function a,

Z1(a) =
∑

n≥2

(n3 − n)|ân|2 ≥ c1
∑

n≥2

n3|ân|2.

Problem
Does the inequality

Zk (a) ≥ ck
∑

n≥2

n2k+1|ân|2k (1)

hold for every real function a ∈ C∞(S) and for every
k = 2,3, . . . , where the coefficient ck > 0 depends on k only? If
the answer is "no", the same question can be asked for positive
functions a.
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The compactness theorem
The Hilbert space Hs(γ) is the completion of C∞(γ) with
respect to the norm

‖a‖2Hs(γ) =
∑

n

(1+ |n|2s)|ân|2.

Theorem
Let aν ∈ C∞(γ) (ν = 1,2, . . . ) be a sequence of functions
uniformly bounded from below by some positive constant

aν(θ) ≥ c > 0.

Assume the Steklov spectrum Sp (aνΛe) to be independent of ν.
Then there exists a subsequence aνk such that each aνk is
conformally equivalent to some function bνk ∈ C∞(γ) and the
sequence of norms ‖bνk‖H3/2(γ) is bounded. Hence, for every
s < 3/2, the sequence bνk contains a subsequence converging
in Hs(γ).
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The scheme of the proof.
We can assume that 1

2π

∫ 2π
0

dθ
aν(θ) = 1 and âν1 = âν−1 ≥ 0. The

positiveness of aν implies âν0 ≥ 1, 0 ≤ âν1 ≤ âν0. The first
invariant

Z1(aν) =
1
3

∑

|n|≥2

|n3 − n| |âνn|2

is independent of ν. Therefore

‖âνk‖2H3/2(γ)
≤ (âν0)2 + (âν1)2 + Z1(aν) ≤ 2(âν0)

2 + Z1(aν).

If the sequence âν0 was bounded, the statement of the theorem
would follow.
On assuming âν0 → +∞, we look for a conformal transformation
Φν : D → D such that

b̂ν0 ≤ C for bν = aνΦν .

It is possible to choose such Φν in the form
Φν(z) = z−ρν

1+ρνz (−1 < ρν < 1).
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