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1 Introduction

Nambu, Mandelstam and ’t Hooft 1970’s:

Confinement is a dual Meissner effect upon condensation of

monopoles.

Ordinary Meissner effect:

Electric charges condense → magnetic Abrikosov-Nielsen-Olesen flux

tubes (strings) are formed → monopoles are confined

monopole

anti-monopole

Higgs phase
for charges



Nambu, Mandelstam and ’t Hooft:

Dual Meissner effect:

Monopoles condense → electric Abrikosov-Nielsen-Olesen flux tubes are

formed → electric charges are confined

monopoles
Higgs Phase for

charge

anticharge



No progress for many years...

DEAD

END

QCD:

• No monopoles

• No confining strings

• Strong coupling



Seiberg and Witten 1994 : Confinement in N = 2 QCD

Cascade gauge symmetry breaking:

• SU(N)→ U(1)N−1 VEV’s of adjoint scalars

• U(1)N−1 → 0 (or discrete subgroup) VEV’s of monopoles

At the last stage Abelian Abrikosov-Nielsen-Olesen flux tubes are

formed.

”Wrong” confinement: Abelian

In both QCD or N = 1 supersymmetric QCD there are

no adjoint fields → no Abelianization

Problem: Cannot decouple adjoint fields in monopole vacua

Masses in low energy U(1)N−1 theory are ∼ √
µΛ

To have weak coupling we need µ ≪ Λ



Non-Abelian setup:

N = 2 QCD with U(N) gauge group and Nf > N fundamental flavors

(quarks), N + 1 < Nf < 3
2
N .

deformed by mass term for adjoint matter µ.

Quark vacuum

Scalar quarks condense with VEV’s ∼ √
ξ, ξ ∼ µm.

Large ξ → theory is at weak coupling



Non-Abelian strings confine monopoles

Example in U(2)

monopole

U(1)

3
τ

What happens if we reduce ξ and go to strong coupling?

Two steps:

• Reduce ξ at small µ ( Near N = 2 limit)

• Increase µ.



2 r Vacua at large ξ

N = 2 QCD with gauge group U(N) = SU(N)× U(1) and

Nf flavors of fundamental matter – quarks

The field content:

U(1) gauge field Aµ

SU(N) gauge field Aa
µ, a = 1, ..., N2 − 1

complex scalar fields a, and aa

+ fermions

Complex scalar fields qkA and q̃Ak (squarks) + fermions

k = 1, ..., N is the color index, A is the flavor index, A = 1, ..., Nf

Mass term for the adjoint chiral field

Wbr = µTrΦ2,

where

Φ =
1

2
A+ T a Aa.



r Vacuum at large ξ ∼ µm

First r (s)quarks condense, 0 ≤ r ≤ N

F -terms in the potential
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Adjoint fields:

〈diagΦ〉 ≈ − 1√
2
[m1, ..., mr, 0, ..., 0] ,

For r = N U(N) gauge group is Higgsed

For r < N classically unbroken gauge group

U(N − r) → U(1)N−r → U(1)

adjoints (N − r − 1) monopoles



r = N Vacuum

Adjoint VEVs:

〈1
2
a+ T a aa〉 = − 1√
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Quark VEV’s

〈qkA〉 = 〈¯̃qkA〉 = 1√
2
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k = 1, ..., N , A = 1, ..., Nf ,

where

ξP ≈ 2 µmP , P = 1, ..., N,



In the equal mass limit U(N)gauge × SU(Nf)flavor

is broken down to

SU(N)C+F × SU(Ñ)F × U(1) ,

where Ñ = Nf −N .

Quarks and gauge fields fill following representations of the global group:

(1, 1) (N2 − 1, 1) (N̄ , Ñ) (N,
¯̃
N)



3 r-Duality at small ξ

Small ξ

|
√

ξP | ≪ ΛN=2 , |mA −mB| ≪ ΛN=2

Use Seiberg-Witten curve on the Coulomb branch at µ = 0

• r-dual theory with gauge group

U(ν)× U(1)N−ν , ν =















r, r ≤ Nf

2

Nf − r, r >
Nf

2
,

and Nf light dyons

(with weight-like electric charges)

• non-Abelian strings which

still confine monopoles

(with root-like electric charges)



The non-Abelian gauge factor U(ν) is not broken by adjoint VEV’s in

the equal mass limit because this theory is infrared-free and stays at

weak coupling.

Our case r = N vacuum, so

ν = Nf −N = Ñ .

Argyres Plesser Seiberg:

SU(ν)× U(1)(N−ν) was identified at roots of Higgs branches in SU(N)

theory with massless quarks and µ = 0.

ν = Ñ Baryonic branch

ν < Ñ Non-baryonic branches



Vacuum

Dyons

〈DlA〉 = 〈 ¯̃D
lA

〉 = 1√
2
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
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





,

〈DJ〉 = 〈 ¯̃D
J

〉 =
√

ξJ

2
, J = Ñ + 1, ..., N .

”Vacuum leap”

(1, ..., N)√
ξ≫ΛN=2

→ (N + 1, ..., Nf , (Ñ + 1), ..., N)√
ξ≪ΛN=2

.



ξP = −2
√
2µ eP , P = 1, ..., N,

where eP are the double roots of the Seiberg–Witten curve,

y2 =
N
∏

P=1

(x− φP )
2 − 4

(

Λ√
2

)N−Ñ Nf
∏

A=1

(

x+
mA√
2

)

=
N
∏

P=1

(x− eP )
2

At small masses the double roots of the Seiberg–Witten curve are

√
2eI = −mI+N ,

√
2eJ = ΛN=2 exp

(

2πi

N − Ñ
J

)

for Ñ < N − 1, where

I = 1, ..., Ñ and J = Ñ + 1, ..., N .

The Ñ first roots are determined by the masses of the last Ñ quarks — a

reflection of the fact that the non-Abelian sector of the dual theory is

infrared-free and is at weak coupling in the domain.



4 ”Instead-of-confinement” mechanism

In the equal mass limit the global group is broken to

SU(N)F × SU(Ñ)C+F × U(1)

Now dyons and dual gauge fields fill following representations of the

global group:

small ξ : (1, 1) (1, Ñ2 − 1) (N̄ , Ñ) (N,
¯̃
N)

Recall that quarks and gauge bosons of the original theory are in

large ξ : (1, 1) (N2 − 1, 1) (N̄, Ñ) (N,
¯̃
N)

(N2 − 1) of SU(N) and (Ñ2 − 1) of SU(Ñ)

are different states

CROSSOVER



What is the physical nature of (N2 − 1) adjoints at small ξ?

• Higgs-screened quarks and gauge bosons decay into

monopole-antimonopole pairs at CMS.

At ξ 6= 0 monopoles are confined and cannot move apart

monopole antimonopole

In the region of small ξ (N2 − 1) of SU(N) are stringy mesons formed by

pairs of monopoles and antimonopoles connected by two strings



Crossover
Original theory, ξ ≫ Λ2 Dual theory, ξ ≪ Λ2

Monopole mesons Monopole mesons

Quarks Dyons

Screened quarks evolve into monopole-antimonopole mesons



Meson

Constituent quark = monopole

Question: Does these monopole-antimonopole mesons looks like

mesons in QCD?

• Correct flavor quantum numbers (adjoint + singlet)

• Lie on Regge tragectories



5 r-Duality at large µ

We need:

|µ| ≫ |
√

ξ|
and

|
√

ξP | ≪ Λ̃N=1, P = 1, ..., Ñ ,

where

Λ̃N−2Ñ
N=1 =

ΛN−Ñ
N=2

µÑ
.

Infrared-free dual theory is weakly coupled



ξP = −2
√
2µ eP , P = 1, ..., N,

First Ñ roots are given by quark masses

√
2eI = −mI+N ,

while others are of order of ΛN=2.

Ñ non-Abelian dyons have VEV’s ∼ √
µm

(N − Ñ) Abelian dyons have VEV’s ∼ √
µΛN=2

Take mA small.

U(1)N−Ñ factors of the dual gauge group U(Ñ)× U(1)N−Ñ decouple

together with Abelian dyons DJ .



We are left at large µ with

U(Ñ)

gauge group and non-Abelian dyons DlA, l = 1, ..., Ñ , A = 1, ..., Nf

Superpotential

W = − 1

2µ
(D̃AD

B)(D̃BD
A) +mA (D̃AD

A)

Monopole confinement and ”instead-of-confinement” phase for

quarks/gauge bosons survive.



6 Conclusions

For r = N -vacuum at small ξ we have:

• Instead of Seiberg-Witten scenario of quark confinement based on

condensation of monopoles we have different scenario:

”Instead-of-confinement” phase

Higgs-screened quarks and gauge bosons transform into

monopole-antimonopole stringy mesons.

• r-duality survives decoupling of the adjoint matter at large µ

• Large-µ r-dual theory coincides with Seiberg’s dual.



7 Generalized Seiberg’s duality

Seiberg’s duality is formulated for r = 0 (monopole) vacua. All other

r 6= 0 vacua are runaway vacua at µ = ∞
Original theory: integrate adjoint fields at large µ

− 1

2µ
(q̃Aq

B)(q̃Bq
A) +mA (q̃Aq

A)

Carlino, Konishi, Murayama, 2000

Generalized Seiberg’s dual: U(Ñ) gauge theory with superpotential

WS = −κ2

2µ
Tr (M2) + κmAMA

A + h̃Alh
lB MA

B ,

where MB
A is the Seiberg neutral mesonic M field defined as

(q̃Aq
B) = κMB

A



There is a classical vacuum

MA =
µ

κ
mA, (h̃h)A = 0, A = 1, ..., N ,

(h̃h)A = −κmA, MA = 0, A = (N + 1), ..., Nf ,

Integrating out the M fields we get

WLE
S =

µ

2κ2
(h̃Ah

B)(h̃Bh
A) +

µ

κ
mA (h̃Ah

A) .

Relate Seiberg’s dual in this vacuum to our r-dual theory in r = N

vacuum:

Both have U(Ñ) gauge groups

The change of variables

DlA =

√

−µ

κ
hlA, l = 1, ..., Ñ , A = 1, ..., Nf

brings this superpotential to the form



WLE
S =

1

2µ
(D̃AD

B)(D̃BD
A)−mA (D̃AD

A) .

This superpotential coincides with the superpotential of our r dual

theory

Seiberg’s duality and r-duality
match for r = N vacuum

Seiberg’s “dual quarks” hlA are not monopoles as naive duality suggests.

Instead, they are quark-like dyons appearing in the r-dual theory below

crossover. Their condensation leads to confinement of monopoles and

“instead-of-confinement” phase for the quarks and gauge bosons of the

original theory.



8 Towards N = 1 QCD by increasing µ

r < N vacua

Quark and monopole VEVs are determined by

ξP = −2
√
2µ

√

e2P − 2S

µ
, P = 1, ..., N

S =
1

32π2
〈TrWαW

α〉

In r vacuum √
2 eP = −mP , P = 1, ..., r



To ensure weak coupling we need
√

ξP ≪ ΛN=2

mP = −
√
2 eP → −

√

4S

µ

Argyres-Douglas conformal regime. Strong coupling

Two exceptions: r = N vacuum and zero vacua

Zero vacua

S ≈ µ
m

Nf−2r

Ñ−r

Λ
N−Ñ

Ñ−r

N=2

e
2πk

Ñ−r
i ≪ µm2, k = 1, ..., (Ñ − r) ,

in the small mass limit



9 Phases of N = 1 QCD

N + 1 < Nf <
3

2
N, µ ≫

√

ξ,
√

ξ ≪ Λ̃N=1

N

N

Λ

r

N

f
N

r
C

N

−

−vacua

Coulomb/Higgs phase

Instead−of−confinement
      phase

AD regime

N

• Zero vacua. U(Ñ) gauge group with Nf flavors of quarks

r quarks condense. Higgs/Coulomb phase



• Λ vacua

S ∼ µΛ2
N=2

Continuation of the Argyres-Douglas conformal strongly coupled

regime to large µ

• r = N Vacuum.

Instead-of-confinement phase


