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Excursion sets and level sets

Let X = {X (s), s ∈ Rd} be a continuous random field.
Definition. An excursion set of a random field X at level u ∈ R is a random set

Au = {s ∈ Rd : X (s) ≥ u}.

The level set of X determined by a level u ∈ R is the random set

Bu = {s ∈ Rd : X (s) = u}.
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Problem setup

Let T ⊂ Rd be a bounded observation window. Consider a bounded random set
Au(X ) ∩ T (or Bu(X ) ∩ T ). What can be said of the behavior of its geometric
characteristics when T grows to infinity?

For example, if T = [0, t]d , and Hk
d (B) is the k-dimensional Hausdorff measure of

B ⊂ Rd , then

Vt(u) = Hd
d (Au(X ) ∩ T ) =

∫
T

I{X (s) ≥ u}ds is the volume of excursion set,

Nt(u) = Hd−1
d (Bu(X ) ∩ T ) = Hd−1

d {s ∈ [0, t]d : X (s) = u} is the area of the level set.

In what follows, all processes and fields (generating level and excursion sets) are
Gaussian, with mean zero and variance one. The covariance function of a process or field
X is denoted by R. The density of a random variable or vector η is pη.
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Rice formula

Rice, 1945: if a process X is C 1 and Nt(u) = H0
1{s ∈ [0, t] : X (s) = u}, then

ENt(u) =

∫ t

0
E
(
|X ′(s)|

∣∣∣X (s) = u
)
pX (s)(u)ds.

For a stationary process this reduces to

ENt(u) = tE|X ′(0)|pX (0)(u) = te−u2/2

√
VarX ′(0)

π
.
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Rice formula
Assume that there are no points s with X (s) = u, X ′(s) = 0, and also that
X (0) 6= u, X (t) 6= u (this holds a.s.). Then, for ε > 0 small enough,
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β3

u + ε

u − ε

Nt(u) =
3∑

i=1

1
2ε
|X (βi )− X (αi )| =

3∑
i=1

1
2ε

(X (βi )− X (αi ))sgn(X (βi )− X (αi ))

=
3∑

i=1

1
2ε

(∫ βi

αi

X ′(s)ds
)
sgn(X ′(s), s ∈ [αi , βi ]) =

3∑
i=1

1
2ε

∫ βi

αi

|X ′(s)|ds.

Hence

Nt(u) = lim
ε→0

∫ t

0
|X ′(s)| I{|X (s)− u| ≤ ε}

2ε
ds.
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Higher moments

Cramer and Leadbetter, 1967: if for any s1 6= s2 the vector (X (s1), X (s2)) is
nondegenerate, then

ENt(u)(Nt(u)−1) =

∫ t

0

∫ t

0
E
(
|X ′(s1)X ′(s2)|

∣∣∣X (s1) = X (s2) = u
)
pX (s1),X (s2)(u, u)ds.

If a process is stationary and L(t) = (R ′′(t)− R ′′(0))/t ∈ L1([0, δ], Leb) (Geman
condition), then EN2

t (u) < ∞.

Geman, 1972: the converse is true.

Belyaev, 1967: moments of higher order, as well as conditions for their finiteness.
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Random fields (d > 1)

Set Nt(u) = Hd−1
d {s ∈ [0, t]d : X (s) = u}.

Wschebor, 1982; Ibragimov and Zaporozhets, 2010

ENt(u) =

∫
[0,t]d

E
(
‖∇X (s)‖

∣∣∣X (s) = u
)
pX (s)(u)ds,

EN2
t (u) =

∫
[0,t]d×[0,t]d

E
(
‖∇X (s1)‖‖∇X (s2)‖

∣∣∣X (s1) = X (s2) = u
)
pX (s1),X (s2)(u, u)ds.
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CLT: random processes

X = {X (s), s ∈ R} — stationary random process

Malevich, 1969: Spectral density f (λ) ↘ 0 as |λ| → ∞,∫
R(λ4f 2(λ) + f 3(λ) + λ2f (λ) log(1 + |λ|)1+a)dλ < ∞ (a > 0),

VarNt(0)/t → σ2 ⇒ (Nt(0)− ENt(0))/
√

t → N(0, σ2), t →∞

Cuzick, 1976:
R ∈ C 2 ∩ L2(R), R ′′ ∈ L2(R),
VarNt(0)/t → σ2 ⇒ (Nt(0)− ENt(0))/

√
t → N(0, σ2), t →∞

Piterbarg, 1978
Geman condition, |R|+ |R ′′| ∈ L1(R) ⇒ VarNt(u) ∼ σ2(u)t and
(Nt(u)− ENt(u))/

√
t → N(0, σ2)

Slud, 1994
VarNt(u) < ∞, R ∈ C 2 ∩ L1(R) ⇒ (Nt(u)− ENt(u))/

√
t → N(0, σ2)
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CLT: random fields

X = {X (s), s ∈ R2} — stationary isotropic fields

Kratz and Leon, 2001
R ∈ C 2(R2) ∩ L1(R2) and ∂R/∂sj ∈ L2(R2), j = 1, . . . , d ,
⇒ (Nt(u)− ENt(u))/t → N(0, σ2), t →∞.
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Non-Gaussian fields

Iribarren, 1989

Adler, Taylor, Samorodnitsky, 2010

Bulinski, Spodarev, Timmermann, 2011
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Functional limit theorems

Let γ be, as before, one of geometric functionals of an excursion set or level set
determined by a level u.
Question number 1. It is possible to say something of the properties of the random
process {γ(Au(X ) ∩ T ), u ∈ R} (resp. {γ(Bu(X ) ∩ T ), u ∈ R})?

Question number 2. If this random process is an element of a good metric space (say
C(R)), can one prove something about the asymptotics of its distribution, when T grows
to infinity?

Let us start with the volume:

Vt(u) =

∫ t

0
I{X (s) ≥ u}ds, Yt(u) := t−1/2(Vt(u)− EVt(u)).
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the process of volumes of excursion sets

Elizarov, 1984:
X = {X (t), t ∈ R} is stationary, 1− R(t) ∼ |t|α (t → 0) for some 0 < α ≤ 2,
R ∈ L1(R). Then the processes {Yt(·), t > 0} converge in distribution in C(R) to a
centered Gaussian process.
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Local times

A similar statement is true for the local times:

Lt(u) = lim
δ→0

1
2δ

(Vt(u − δ)− Vt(u + δ)).

Theorem 2. If α ≤ 1, then the processes {t−1/2(Lt(·)− EL(·)), t > 0} converge in
distribution in C(R) to a centered Gaussian process.
What can be said not for local time but for the level set area?
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Assumptions

Let d ≥ 3, the random field X = {X (s), s ∈ Rd} with C 1 realizations be stationary and
isotropic,

Nt(u) = Hd−1
d {s ∈ [0, t]d : X (s) = u}, Zt(u) := t−d/2(Nt(u)− ENt(u)).

We may and will always assume that

EX (0) = 0, VarX (0) = 1, Var
∂X (0)

∂s1
= −∂2R(0)

∂s2
1

= 1.

Assume also that

1) P(Hd−1({s ∈ Rd : ∇X (s) = 0}) > 0) = 0;
2) P(X (s) = u,∇X (s) = 0 for all s ∈ Rd ) = 0 with any u ∈ R.

Both last requirements are true, e.g., if the realizations of X are C 2 a.s.
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Continuity of paths

Let A ⊂ Rd be a block, i.e. A = (a1, b1)× . . .× (ad , bd ) with some ai < bi , i = 1, . . . , d .

Theorem 3 (A.Sh., 2013). There exists an event Ω0 with P(Ω0 = 1), on which for any
u ∈ R the set function NX (D, u) := Hd−1

d (D ∩ Bu(X )) defines a measure on Borel
subsets of A. On the same event, for any continuous function f : Rd → R the map

u 7→
∫

Bu (X )∩A
f (s)NX (ds, u)

is well-defined and continuous on R.
With f ≡ 1 one obtains the continuity of Nt(u) in u.
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Functional central limit theorem in L2(R)

Let µ be a standard Gaussian measure on R.
Theorem 4 (D.Meschenmoser, A.Sh., 2012). Assume that the conditions of previous
theorem hold and, in addition, there exists a bounded continuous function g : Rd → R
such that

g(s) → 0 при ‖s‖ → ∞,∫
Rd

√
g(s)ds < ∞,

|R(s)|+
d∑

j=1

∣∣∣∣∂R(s)
∂sj

∣∣∣∣ +
d∑

j,q=1

∣∣∣∣∂2R(s)
∂sj∂sq

∣∣∣∣ < g(s)

as s 6= 0.

Then the random processes
Zt := t−d/2(Nt − ENt)

converge in distribution in L2(R, µ), as t →∞ to a Gaussian random element Z with
covariance operator

Var(Z , f )L2(R,µ) =
1
2π

∫
Rd

cov
(
f (X (0))e−X (0)2/2‖∇X (0)‖, f (X (s))e−X (s)2/2‖∇X (s)‖

)
ds,

here f ∈ L2(R, µ).
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Functional central limit theorem in C (R)

Theorem 5. (A.Sh., 2013). Assume that X satisfies the conditions of Theorem 3, and,
moreover, the covariance function of X is integrable over Rd , together with its partial
derivatives of order 1 and 2. Then the random processes {Zn(·), n ∈ N} processes
converge in distribution in C(R), as n →∞, to a centered Gaussian process Z with
covariance function

EZ(u)Z(v) =

∫
Rd

(
E(‖∇X (0)‖‖∇X (s)‖|X (0) = u, X (s) = v)pX (0),X (s)(u, v)

−E(‖∇X (0)‖)2pX (0)(u)pX (s)(v)
)
ds.
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Applications: integrals of (BL, θ)-dependent random fields

Definition (A.Bulinski, 2010). A square-integrable random field ξ = {ξ(t), t ∈ Rd} is
called (BL, θ)-dependent if there exist a non-increasing function θξ : R+ → R+,
θξ(r) → 0 as r →∞, such that for any ∆ > 0 large enough, any disjoint finite
I , J ⊂ T (∆) and all bounded Lipschitz functions f : R|I | → R, g : R|J| → R one has

|cov(f (ξI ), g(ξJ))| ≤ Lip(f )Lip(g)(|I | ∧ |J|)∆dθξ(r).

Here T (∆) = {j/∆ ∈ Rd : j ∈ Zd}, the notation ξI = (ξi , i ∈ I ) is employed, |M| is the
cardinality of a finite M, r is the distance between I and J, and the Lipschitz constants
are with respect to the norm ‖z‖1.
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Functional central limit theorem for the integrals

Suppose that X is as in Theorem 5. Assume also that Y is a strictly stationary
(BL, θ)-dependent random field, independent from X . Define

Zn(u) := n−d/2
∫

[0,n]d
(Y (s)NX (ds, u)− EY (0)E‖∇X (0)‖pX (0)(u) ds), n ∈ N, u ∈ R.

Theorem 6 (A.Sh., 2013). These processes converge in distribution in C(R), as n →∞,
to a centered Gaussian process Z with covariance function

EZ(u)Z(v) =

∫
Rd

(
EY (0)EY (s)E(‖∇X (0)‖‖∇X (s)‖|X (0) = u, X (s) = v)pX (0),X (s)(u, v)

−(EY (0))2(E(‖∇X (0)‖)2pX (0)(u)pX (s)(v)
)
ds.
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