Limit theorems for the measure of level sets of Gaussian random fields

Alexey Shashkin

MSU

Saint Petersburg 2013

Alexey Shashkin (MSU)

Limit theorems for the measure of level sets (Sa

Saint Petersburg 2013 1 / 21

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

1 Introduction

2 History: moments

3 History: central limit theorem

4 Main questions

5 Results

イロト イポト イヨト イヨト

2

Let $X = \{X(s), s \in \mathbb{R}^d\}$ be a continuous random field. **Definition**. An excursion set of a random field X at level $u \in \mathbb{R}$ is a random set

$$A_u = \{s \in \mathbb{R}^d : X(s) \ge u\}.$$

The level set of X determined by a level $u \in \mathbb{R}$ is the random set

$$B_u = \{s \in \mathbb{R}^d : X(s) = u\}.$$

Problem setup

Let $T \subset \mathbb{R}^d$ be a bounded observation window. Consider a bounded random set $A_u(X) \cap T$ (or $B_u(X) \cap T$). What can be said of the behavior of its geometric characteristics when T grows to infinity?

For example, if $T = [0, t]^d$, and $\mathcal{H}^k_d(B)$ is the *k*-dimensional Hausdorff measure of $B \subset \mathbb{R}^d$, then

$$V_t(u) = \mathcal{H}^d_d(A_u(X) \cap T) = \int_T \mathbb{I}\{X(s) \ge u\} ds$$
 is the volume of excursion set,

 $N_t(u) = \mathcal{H}_d^{d-1}(B_u(X) \cap T) = \mathcal{H}_d^{d-1}\{s \in [0, t]^d : X(s) = u\}$ is the area of the level set.

In what follows, all processes and fields (generating level and excursion sets) are Gaussian, with mean zero and variance one. The covariance function of a process or field X is denoted by R. The density of a random variable or vector η is p_{η} .

Problem setup

Let $T \subset \mathbb{R}^d$ be a bounded observation window. Consider a bounded random set $A_u(X) \cap T$ (or $B_u(X) \cap T$). What can be said of the behavior of its geometric characteristics when T grows to infinity?

For example, if $T = [0, t]^d$, and $\mathcal{H}_d^k(B)$ is the *k*-dimensional Hausdorff measure of $B \subset \mathbb{R}^d$, then

$$V_t(u) = \mathcal{H}^d_d(A_u(X) \cap T) = \int_T \mathbb{I}\{X(s) \ge u\} ds$$
 is the volume of excursion set,

$$N_t(u) = \mathcal{H}^{d-1}_d(B_u(X) \cap \mathcal{T}) = \mathcal{H}^{d-1}_d\{s \in [0,t]^d : X(s) = u\}$$
 is the area of the level set.

In what follows, all processes and fields (generating level and excursion sets) are Gaussian, with mean zero and variance one. The covariance function of a process or field X is denoted by R. The density of a random variable or vector η is p_{η} .

Problem setup

Let $T \subset \mathbb{R}^d$ be a bounded observation window. Consider a bounded random set $A_u(X) \cap T$ (or $B_u(X) \cap T$). What can be said of the behavior of its geometric characteristics when T grows to infinity?

For example, if $T = [0, t]^d$, and $\mathcal{H}_d^k(B)$ is the *k*-dimensional Hausdorff measure of $B \subset \mathbb{R}^d$, then

$$V_t(u) = \mathcal{H}^d_d(A_u(X) \cap T) = \int_T \mathbb{I}\{X(s) \ge u\} ds$$
 is the volume of excursion set,

 $N_t(u) = \mathcal{H}_d^{d-1}(B_u(X) \cap T) = \mathcal{H}_d^{d-1}\{s \in [0,t]^d : X(s) = u\}$ is the area of the level set.

In what follows, all processes and fields (generating level and excursion sets) are Gaussian, with mean zero and variance one. The covariance function of a process or field X is denoted by R. The density of a random variable or vector η is p_{η} .

A D N A B N A B N A B N

- 31

• Rice, 1945: if a process X is C^1 and $N_t(u) = \mathcal{H}_1^0 \{ s \in [0, t] : X(s) = u \}$, then

$$\mathsf{E}N_t(u) = \int_0^t \mathsf{E}\Big(|X'(s)|\Big|X(s) = u\Big)p_{X(s)}(u)ds$$

For a stationary process this reduces to

$$\mathsf{E}N_t(u) = t\mathsf{E}|X'(0)|p_{X(0)}(u) = te^{-u^2/2}\frac{\sqrt{\mathsf{Var}X'(0)}}{\pi}.$$

4 T N 4 A N 4

5 / 21

Assume that there are no points s with X(s) = u, X'(s) = 0, and also that $X(0) \neq u, X(t) \neq u$ (this holds a.s.). Then, for $\varepsilon > 0$ small enough,

Hence

$$N_t(u) = \lim_{\varepsilon \to 0} \int_0^t |X'(s)| \frac{\mathbb{I}\{|X(s) - u| \le \varepsilon\}}{2\varepsilon} ds.$$

Alexey Shashkin (MSU)

Assume that there are no points s with X(s) = u, X'(s) = 0, and also that $X(0) \neq u, X(t) \neq u$ (this holds a.s.). Then, for $\varepsilon > 0$ small enough,

Hence

$$N_t(u) = \lim_{\varepsilon \to 0} \int_0^t |X'(s)| \frac{\mathbb{I}\{|X(s) - u| \le \varepsilon\}}{2\varepsilon} ds.$$

Assume that there are no points s with X(s) = u, X'(s) = 0, and also that $X(0) \neq u, X(t) \neq u$ (this holds a.s.). Then, for $\varepsilon > 0$ small enough,

Hence

$$N_t(u) = \lim_{\varepsilon \to 0} \int_0^t |X'(s)| \frac{\mathbb{I}\{|X(s) - u| \le \varepsilon\}}{2\varepsilon} ds.$$

Alexey Shashkin (MSU)

Higher moments

• Cramer and Leadbetter, 1967: if for any $s_1 \neq s_2$ the vector $(X(s_1), X(s_2))$ is nondegenerate, then

$$\mathsf{EN}_t(u)(N_t(u)-1) = \int_0^t \int_0^t \mathsf{E}\Big(|X'(s_1)X'(s_2)|\Big|X(s_1) = X(s_2) = u\Big)p_{X(s_1),X(s_2)}(u,u)ds.$$

If a process is stationary and $L(t) = (R''(t) - R''(0))/t \in L^1([0, \delta], \text{Leb})$ (Geman condition), then $\mathsf{E}N_t^2(u) < \infty$.

- Geman, 1972: the converse is true.
- Belyaev, 1967: moments of higher order, as well as conditions for their finiteness.

4 TO N 4 4 1 N 4 1 N

Higher moments

• Cramer and Leadbetter, 1967: if for any $s_1 \neq s_2$ the vector $(X(s_1), X(s_2))$ is nondegenerate, then

$$\mathsf{EN}_t(u)(N_t(u)-1) = \int_0^t \int_0^t \mathsf{E}\Big(|X'(s_1)X'(s_2)|\Big|X(s_1) = X(s_2) = u\Big)p_{X(s_1),X(s_2)}(u,u)ds.$$

If a process is stationary and $L(t) = (R''(t) - R''(0))/t \in L^1([0, \delta], \text{Leb})$ (Geman condition), then $\mathsf{E}N_t^2(u) < \infty$.

• Geman, 1972: the converse is true.

• Belyaev, 1967: moments of higher order, as well as conditions for their finiteness.

4 TO N 4 4 1 N 4 1 N

Higher moments

• Cramer and Leadbetter, 1967: if for any $s_1 \neq s_2$ the vector $(X(s_1), X(s_2))$ is nondegenerate, then

$$\mathsf{EN}_t(u)(N_t(u)-1) = \int_0^t \int_0^t \mathsf{E}\Big(|X'(s_1)X'(s_2)|\Big|X(s_1) = X(s_2) = u\Big)p_{X(s_1),X(s_2)}(u,u)ds.$$

If a process is stationary and $L(t) = (R''(t) - R''(0))/t \in L^1([0, \delta], \text{Leb})$ (Geman condition), then $\mathsf{E}N_t^2(u) < \infty$.

- Geman, 1972: the converse is true.
- Belyaev, 1967: moments of higher order, as well as conditions for their finiteness.

Random fields (d > 1)

۲

Set
$$N_t(u) = \mathcal{H}_d^{d-1} \{ s \in [0, t]^d : X(s) = u \}.$$

• Wschebor, 1982; Ibragimov and Zaporozhets, 2010

$$\mathsf{EN}_{t}(u) = \int_{[0,t]^{d}} \mathsf{E}\Big(\|\nabla X(s)\|\Big|X(s) = u\Big)p_{X(s)}(u)ds,$$
$$\mathsf{EN}_{t}^{2}(u) = \int_{[0,t]^{d} \times [0,t]^{d}} \mathsf{E}\Big(\|\nabla X(s_{1})\|\|\nabla X(s_{2})\|\Big|X(s_{1}) = X(s_{2}) = u\Big)p_{X(s_{1}),X(s_{2})}(u,u)ds.$$

イロト イポト イヨト イヨト

э

8 / 21

 $X = \{X(s), s \in \mathbb{R}\}$ — stationary random process

- Malevich, 1969: Spectral density $f(\lambda) \searrow 0$ as $|\lambda| \to \infty$, $\int_{\mathbb{D}} (\lambda^4 f^2(\lambda) + f^3(\lambda) + \lambda^2 f(\lambda) \log(1 + |\lambda|)^{1+a}) d\lambda < \infty \ (a > 0),$ $\operatorname{Var} N_t(0)/t \to \sigma^2 \Rightarrow (N_t(0) - \operatorname{E} N_t(0))/\sqrt{t} \to N(0, \sigma^2), t \to \infty$
- Cuzick, 1976:
- Piterbarg, 1978
- Slud. 1994

化间面 化苯基苯乙基

 $X = \{X(s), s \in \mathbb{R}\}$ — stationary random process

- Malevich, 1969: Spectral density $f(\lambda) \searrow 0$ as $|\lambda| \to \infty$, $\int_{\mathbb{R}} (\lambda^4 f^2(\lambda) + f^3(\lambda) + \lambda^2 f(\lambda) \log(1 + |\lambda|)^{1+a}) d\lambda < \infty \text{ (}a > 0\text{),}$ $\operatorname{Var} N_t(0)/t \to \sigma^2 \Rightarrow (N_t(0) - \mathbb{E} N_t(0))/\sqrt{t} \to N(0, \sigma^2), \ t \to \infty$
- Cuzick, 1976: $R \in C^2 \cap L^2(\mathbb{R}), R'' \in L^2(\mathbb{R}),$ $\operatorname{Var} N_t(0)/t \to \sigma^2 \Rightarrow (N_t(0) - \operatorname{E} N_t(0))/\sqrt{t} \to N(0, \sigma^2), t \to \infty$

• Piterbarg, 1978 Geman condition, $|R| + |R''| \in L^1(\mathbb{R}) \Rightarrow \operatorname{Var} N_t(u) \sim \sigma^2(u)t$ and $(N_t(u) - \mathbb{E} N_t(u))/\sqrt{t} \to N(0, \sigma^2)$

• Slud, 1994

 $\operatorname{Var} N_t(u) < \infty, \, R \in C^2 \cap L^1(\mathbb{R}) \Rightarrow (N_t(u) - \mathsf{E} N_t(u))/\sqrt{t} \to N(0, \sigma^2)$

- 不得た 不足た 不足た

 $X = \{X(s), s \in \mathbb{R}\}$ — stationary random process

- Malevich, 1969: Spectral density $f(\lambda) \searrow 0$ as $|\lambda| \to \infty$, $\int_{\mathbb{R}} (\lambda^4 f^2(\lambda) + f^3(\lambda) + \lambda^2 f(\lambda) \log(1 + |\lambda|)^{1+a}) d\lambda < \infty \text{ (}a > 0\text{),}$ $\operatorname{Var} N_t(0)/t \to \sigma^2 \Rightarrow (N_t(0) - \mathsf{E} N_t(0))/\sqrt{t} \to N(0, \sigma^2), \ t \to \infty$
- Cuzick, 1976: $R \in C^2 \cap L^2(\mathbb{R}), R'' \in L^2(\mathbb{R}),$ $\operatorname{Var} N_t(0)/t \to \sigma^2 \Rightarrow (N_t(0) - \operatorname{E} N_t(0))/\sqrt{t} \to N(0, \sigma^2), t \to \infty$
- Piterbarg, 1978 Geman condition, $|R| + |R''| \in L^1(\mathbb{R}) \Rightarrow \operatorname{Var} N_t(u) \sim \sigma^2(u)t$ and $(N_t(u) - \operatorname{E} N_t(u))/\sqrt{t} \to N(0, \sigma^2)$

• Slud, 1994 Var $N_t(u) < \infty, R \in C^2 \cap L^1(\mathbb{R}) \Rightarrow (N_t(u) - \mathsf{E}N_t(u))/\sqrt{t} \to N(0, \sigma^2)$

- 不得た 不足た 不足た

 $X = \{X(s), s \in \mathbb{R}\}$ — stationary random process

- Malevich, 1969: Spectral density $f(\lambda) \searrow 0$ as $|\lambda| \to \infty$, $\int_{\mathbb{R}} (\lambda^4 f^2(\lambda) + f^3(\lambda) + \lambda^2 f(\lambda) \log(1 + |\lambda|)^{1+a}) d\lambda < \infty \text{ (}a > 0\text{),}$ $\operatorname{Var} N_t(0)/t \to \sigma^2 \Rightarrow (N_t(0) - \mathsf{E} N_t(0))/\sqrt{t} \to N(0, \sigma^2), \ t \to \infty$
- Cuzick, 1976: $R \in C^2 \cap L^2(\mathbb{R}), R'' \in L^2(\mathbb{R}),$ $\operatorname{Var} N_t(0)/t \to \sigma^2 \Rightarrow (N_t(0) - \operatorname{E} N_t(0))/\sqrt{t} \to N(0, \sigma^2), t \to \infty$
- Piterbarg, 1978 Geman condition, $|R| + |R''| \in L^1(\mathbb{R}) \Rightarrow \operatorname{Var} N_t(u) \sim \sigma^2(u)t$ and $(N_t(u) - \operatorname{E} N_t(u))/\sqrt{t} \rightarrow N(0, \sigma^2)$
- Slud, 1994 Var $N_t(u) < \infty, R \in C^2 \cap L^1(\mathbb{R}) \Rightarrow (N_t(u) - \mathsf{E}N_t(u))/\sqrt{t} \to N(0, \sigma^2)$

- 不得た 不足た 不足た

CLT: random fields

$$X = \{X(s), s \in \mathbb{R}^2\}$$
 — stationary isotropic fields

• Kratz and Leon, 2001

$$R \in C^2(\mathbb{R}^2) \cap L^1(\mathbb{R}^2)$$
 and $\partial R / \partial s_j \in L^2(\mathbb{R}^2), \ j = 1, \dots, d,$
 $\Rightarrow (N_t(u) - EN_t(u))/t \rightarrow N(0, \sigma^2), \ t \rightarrow \infty.$

(ロ) (四) (三) (三)

2

- Iribarren, 1989
- Adler, Taylor, Samorodnitsky, 2010
- Bulinski, Spodarev, Timmermann, 2011

4 T N 4 A N

э

Functional limit theorems

Let γ be, as before, one of geometric functionals of an excursion set or level set determined by a level u.

Question number 1. It is possible to say something of the properties of the random process $\{\gamma(A_u(X) \cap T), u \in \mathbb{R}\}$ (resp. $\{\gamma(B_u(X) \cap T), u \in \mathbb{R}\}$)?

Question number 2. If this random process is an element of a good metric space (say $C(\mathbb{R})$), can one prove something about the asymptotics of its distribution, when T grows to infinity?

Let us start with the volume:

$$V_t(u) = \int_0^t \mathbb{I}\{X(s) \ge u\} ds, \ \ Y_t(u) := t^{-1/2} (V_t(u) - \mathsf{E}V_t(u)).$$

Functional limit theorems

Let γ be, as before, one of geometric functionals of an excursion set or level set determined by a level u.

Question number 1. It is possible to say something of the properties of the random process $\{\gamma(A_u(X) \cap T), u \in \mathbb{R}\}$ (resp. $\{\gamma(B_u(X) \cap T), u \in \mathbb{R}\}$)?

Question number 2. If this random process is an element of a good metric space (say $C(\mathbb{R})$), can one prove something about the asymptotics of its distribution, when T grows to infinity?

Let us start with the volume:

$$V_t(u) = \int_0^t \mathbb{I}\{X(s) \ge u\} ds, \ \ Y_t(u) := t^{-1/2} (V_t(u) - \mathsf{E}V_t(u)).$$

(日本)(周本)(王本)(王本

Elizarov, 1984: $X = \{X(t), t \in \mathbb{R}\}$ is stationary, $1 - R(t) \sim |t|^{\alpha}$ $(t \to 0)$ for some $0 < \alpha \le 2$, $R \in L^1(\mathbb{R})$. Then the processes $\{Y_t(\cdot), t > 0\}$ converge in distribution in $C(\mathbb{R})$ to a centered Gaussian process.

Local times

A similar statement is true for the local times:

$$L_t(u) = \lim_{\delta \to 0} \frac{1}{2\delta} (V_t(u-\delta) - V_t(u+\delta)).$$

Theorem 2. If $\alpha \leq 1$, then the processes $\{t^{-1/2}(L_t(\cdot) - \mathsf{E}L(\cdot)), t > 0\}$ converge in distribution in $C(\mathbb{R})$ to a centered Gaussian process.

What can be said not for local time but for the level set area?

・ロト ・ 同ト ・ ヨト ・ ヨト

Local times

A similar statement is true for the local times:

$$L_t(u) = \lim_{\delta \to 0} \frac{1}{2\delta} (V_t(u-\delta) - V_t(u+\delta)).$$

Theorem 2. If $\alpha \leq 1$, then the processes $\{t^{-1/2}(L_t(\cdot) - \mathsf{E}L(\cdot)), t > 0\}$ converge in distribution in $C(\mathbb{R})$ to a centered Gaussian process. What can be said not for local time but for the level set area?

Let $d \ge 3$, the random field $X = \{X(s), s \in \mathbb{R}^d\}$ with C^1 realizations be stationary and isotropic,

$$N_t(u) = \mathcal{H}_d^{d-1} \{ s \in [0, t]^d : X(s) = u \}, \ Z_t(u) := t^{-d/2} (N_t(u) - \mathsf{E}N_t(u)) \}$$

We may and will always assume that

$$\mathsf{E}X(0) = 0, \ \ \mathsf{Var}X(0) = 1, \ \ \mathsf{Var}\frac{\partial X(0)}{\partial s_1} = -\frac{\partial^2 R(0)}{\partial s_1^2} = 1.$$

Assume also that

1)
$$P(\mathcal{H}_{d-1}(\{s \in \mathbb{R}^d : \nabla X(s) = 0\}) > 0) = 0;$$

2) $P(X(s) = u, \nabla X(s) = 0 \text{ for all } s \in \mathbb{R}^d) = 0 \text{ with any } u \in \mathbb{R}.$

Both last requirements are true, e.g., if the realizations of X are C^2 a.s.

4 D N 4 🗐 N 4 E N 4

Let $d \ge 3$, the random field $X = \{X(s), s \in \mathbb{R}^d\}$ with C^1 realizations be stationary and isotropic,

$$N_t(u) = \mathcal{H}_d^{d-1} \{ s \in [0, t]^d : X(s) = u \}, \ Z_t(u) := t^{-d/2} (N_t(u) - \mathsf{E}N_t(u)) \}$$

We may and will always assume that

$$\mathsf{E}X(0) = 0, \ \ \mathsf{Var}X(0) = 1, \ \ \mathsf{Var}\frac{\partial X(0)}{\partial s_1} = -\frac{\partial^2 R(0)}{\partial s_1^2} = 1.$$

Assume also that

1) $P(\mathcal{H}_{d-1}(\{s \in \mathbb{R}^d : \nabla X(s) = 0\}) > 0) = 0;$ 2) $P(X(s) = u, \nabla X(s) = 0 \text{ for all } s \in \mathbb{R}^d) = 0 \text{ with any } u \in \mathbb{R}.$

Both last requirements are true, e.g., if the realizations of X are C^2 a.s.

4 日本 4 周本 4 戸本 4 戸

Let $d \ge 3$, the random field $X = \{X(s), s \in \mathbb{R}^d\}$ with C^1 realizations be stationary and isotropic,

$$N_t(u) = \mathcal{H}_d^{d-1} \{ s \in [0, t]^d : X(s) = u \}, \ Z_t(u) := t^{-d/2} (N_t(u) - \mathsf{E}N_t(u)) \}$$

We may and will always assume that

$$\mathsf{E}X(0) = 0, \ \ \mathsf{Var}X(0) = 1, \ \ \mathsf{Var}\frac{\partial X(0)}{\partial s_1} = -\frac{\partial^2 R(0)}{\partial s_1^2} = 1.$$

Assume also that

1) $\begin{array}{l} \mathsf{P}(\mathcal{H}_{d-1}(\{s \in \mathbb{R}^d : \nabla X(s) = 0\}) > 0) = 0; \\ \mathsf{P}(X(s) = u, \nabla X(s) = 0 \text{ for all } s \in \mathbb{R}^d) = 0 \text{ with any } u \in \mathbb{R}. \end{array}$

Both last requirements are true, e.g., if the realizations of X are C^2 a.s.

Let $d \ge 3$, the random field $X = \{X(s), s \in \mathbb{R}^d\}$ with C^1 realizations be stationary and isotropic,

$$N_t(u) = \mathcal{H}_d^{d-1}\{s \in [0, t]^d : X(s) = u\}, Z_t(u) := t^{-d/2}(N_t(u) - \mathsf{E}N_t(u)).$$

We may and will always assume that

$$\mathsf{E}X(0) = 0, \ \ \mathsf{Var}X(0) = 1, \ \ \mathsf{Var}\frac{\partial X(0)}{\partial s_1} = -\frac{\partial^2 R(0)}{\partial s_1^2} = 1.$$

Assume also that

1) $\begin{array}{l} \mathsf{P}(\mathcal{H}_{d-1}(\{s \in \mathbb{R}^d : \nabla X(s) = 0\}) > 0) = 0; \\ \mathsf{P}(X(s) = u, \nabla X(s) = 0 \text{ for all } s \in \mathbb{R}^d) = 0 \text{ with any } u \in \mathbb{R}. \end{array}$

Both last requirements are true, e.g., if the realizations of X are C^2 a.s.

Continuity of paths

Let $A \subset \mathbb{R}^d$ be a block, i.e. $A = (a_1, b_1) \times \ldots \times (a_d, b_d)$ with some $a_i < b_i, i = 1, \ldots, d$.

Theorem 3 (A.Sh., 2013). There exists an event Ω_0 with $P(\Omega_0 = 1)$, on which for any $u \in \mathbb{R}$ the set function $N_X(D, u) := \mathcal{H}_d^{d-1}(D \cap B_u(X))$ defines a measure on Borel subsets of A. On the same event, for any continuous function $f : \mathbb{R}^d \to \mathbb{R}$ the map

$$u \mapsto \int_{B_{\boldsymbol{u}}(X) \cap A} f(s) N_X(ds, u)$$

is well-defined and continuous on \mathbb{R} .

With $f \equiv 1$ one obtains the continuity of $N_t(u)$ in u.

Functional central limit theorem in $L^2(\mathbb{R})$

Let μ be a standard Gaussian measure on \mathbb{R} .

Theorem 4 (D.Meschenmoser, A.Sh., 2012). Assume that the conditions of previous theorem hold and, in addition, there exists a bounded continuous function $g : \mathbb{R}^d \to \mathbb{R}$ such that

•
$$g(s) \to 0$$
 при $||s|| \to \infty$,
• $\int_{\mathbb{R}^d} \sqrt{g(s)} ds < \infty$,
• $|R(s)| + \sum_{j=1}^d \left| \frac{\partial R(s)}{\partial s_j} \right| + \sum_{j,q=1}^d \left| \frac{\partial^2 R(s)}{\partial s_j \partial s_q} \right| < g(s)$

as $s \neq 0$.

Then the random processes

$$Z_t := t^{-d/2} (N_t - \mathsf{E} N_t)$$

converge in distribution in $L^2(\mathbb{R},\mu)$, as $t\to\infty$ to a Gaussian random element Z with covariance operator

$$\begin{aligned} & \mathsf{Var}(Z,f)_{L^2(\mathbb{R},\mu)} = \frac{1}{2\pi} \int_{\mathbb{R}^d} cov \left(f(X(0)) e^{-X(0)^2/2} \|\nabla X(0)\|, f(X(s)) e^{-X(s)^2/2} \|\nabla X(s)\| \right) ds, \\ & \mathsf{here} \ f \in L^2(\mathbb{R},\mu). \end{aligned}$$

Theorem 5. (A.Sh., 2013). Assume that X satisfies the conditions of Theorem 3, and, moreover, the covariance function of X is integrable over \mathbb{R}^d , together with its partial derivatives of order 1 and 2. Then the random processes $\{Z_n(\cdot), n \in \mathbb{N}\}$ processes converge in distribution in $C(\mathbb{R})$, as $n \to \infty$, to a centered Gaussian process Z with covariance function

$$\mathsf{E}Z(u)Z(v) = \int_{\mathbb{R}^d} \Big(\mathsf{E}(\|\nabla X(0)\| \|\nabla X(s)\| | X(0) = u, X(s) = v) p_{X(0), X(s)}(u, v) \Big)$$

$$-\mathsf{E}(\|\nabla X(0)\|)^2 p_{X(0)}(u) p_{X(s)}(v) \bigg) ds.$$

Definition (A.Bulinski, 2010). A square-integrable random field $\xi = \{\xi(t), t \in \mathbb{R}^d\}$ is called (BL, θ) -dependent if there exist a non-increasing function $\theta_{\xi} : \mathbb{R}_+ \to \mathbb{R}_+$, $\theta_{\xi}(r) \to 0$ as $r \to \infty$, such that for any $\Delta > 0$ large enough, any disjoint finite $I, J \subset T(\Delta)$ and all bounded Lipschitz functions $f : \mathbb{R}^{|I|} \to \mathbb{R}, g : \mathbb{R}^{|J|} \to \mathbb{R}$ one has

 $|cov(f(\xi_I), g(\xi_J))| \leq Lip(f)Lip(g)(|I| \wedge |J|)\Delta^d \theta_{\xi}(r).$

Here $T(\Delta) = \{j/\Delta \in \mathbb{R}^d : j \in \mathbb{Z}^d\}$, the notation $\xi_I = (\xi_i, i \in I)$ is employed, |M| is the cardinality of a finite M, r is the distance between I and J, and the Lipschitz constants are with respect to the norm $||z||_1$.

Functional central limit theorem for the integrals

Suppose that X is as in Theorem 5. Assume also that Y is a strictly stationary (BL, θ) -dependent random field, independent from X. Define

$$Z_n(u) := n^{-d/2} \int_{[0,n]^d} (Y(s)N_X(ds, u) - \mathsf{E}Y(0)\mathsf{E} \|\nabla X(0)\| p_{X(0)}(u) \, ds), \, n \in \mathbb{N}, \, u \in \mathbb{R}.$$

Theorem 6 (A.Sh., 2013). These processes converge in distribution in $C(\mathbb{R})$, as $n \to \infty$, to a centered Gaussian process Z with covariance function

$$\mathsf{E}Z(u)Z(v) = \int_{\mathbb{R}^d} \Big(\mathsf{E}Y(0)\mathsf{E}Y(s)\mathsf{E}(\|\nabla X(0)\| \|\nabla X(s)\| |X(0) = u, X(s) = v) p_{X(0), X(s)}(u, v) \Big)$$

$$-(\mathsf{E}Y(0))^{2}(\mathsf{E}(\|\nabla X(0)\|)^{2}p_{X(0)}(u)p_{X(s)}(v))ds.$$

References

- J.M.Azais, M.Wschebor. Level sets and extrema of random processes and fields. Wiley, 2009.
- A.I. Elizarov. Central limit theorem for the sojourn time and local time of a stationary process. Theory Probab. Appl., 1988, V. 33, p. 161–164.
- I.A.Ibragimov, D.N.Zaporozhets. On random surface area. Zap. Nauchn. Sem. POMI, 2010, V. 384, p. 154–175.
- M. Kratz. Level crossings and other level functionals of stationary Gaussian processes. Probab. Surv., 2006, V. 3, p. 230–288.
- D. Meschenmoser, A. Shashkin. A functional CLT for the surface measures of a Gaussian random field. Theory Probab. Appl., V. 57, No. 2.
- A. Shashkin. A functional CLT for the level measure of a Gaussian random field. Statist. Probab. Lett., 2013, V. 83, p. 637–643.