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X1, X2, ... is a stationary sequence of random variables defined
on (Ω, F , P).

Denote by {X ∗i } a sequence of independent copies of random
variables X1.
Denote by F the distribution of X1.
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Kernel f

Let f ∈ L2(Rm, F m),

then we have

f (t1, ..., tm) =
∞∑

k1=0

...
∞∑

km=0

fk1...kmek1(t1)...ekm(tm),

where {ekj} is an orthonormal basis in L2(R, F ).

∞∑
k1=1

...

∞∑
km=1

|fk1...km | < ∞

f (t1, ..., tm) ∈ L2(Rm, F m) is canonical, i.e.,

Ef (y1, ..., yi−1, X1, yi+1, ..., ym) = 0

for all yj ∈ R and i ∈ {1...m}.
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U-process

We consider the sequence of U-statistics

Un(t) := n−m/2
∑

1≤i1 6=
...

∑
6=im≤[nt]

f (Xi1 , ..., Xim), t ∈ [0, 1],

as a random process in D[0, 1].

For i.i.d. observations,

Un
d→

∞∑
k1=0

...

∞∑
km=0

fk1...kmΠ∞j=1Hvj (i1,...,im)(τj),

where {τj} is a sequence of independent variables with the
standard normal distribution,
vj(i1, ..., im) is the number of the subscripts i1, ..., im equal to j ,
and Hk (x) are the Hermite polynomials defined by the formula

Hk (x) = (−1)k exp(x2/2)
dk

dxk exp(−x2/2), k ≥ 0.
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ϕ-mixing

X1, X2, ... satisfy ϕ-mixing, i.e.,

ϕ(i) := sup
k≥1

sup
A∈Mk

1 ,B∈M∞k+i ,P(A)>0

|P(AB)− P(A)P(B)|
P(A)

→ 0 for i →∞.

Mk
j is the σ-algebra of events generated by Xj , ..., Xk .

We assume that
∞∑

k=1

ϕ(k)1/2 < ∞.

This condition provides the corresponding central limit theorem.
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Restrictions on the joint distributions of the sample
elements.

(AC) For any set of pairwise different subscripts (j1, ..., jm), the
distribution of the vector (Xj1 , ..., Xjm) is absolutely continuous
with respect to the distribution of the vector (X ∗1 , ..., X ∗m).

Then U-statistics can be represented as the multiple series that
converges with probability 1:

Un(t) = n−m/2
∞∑

k1=0

...
∞∑

km=0

fk1...km

∑
1≤i1 6=

...
∑

6=im≤[nt]

ek1(Xi1)...ekm(Xim).
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Assume that the basis {ej(t)} satisfies the restriction:

sup
i

E|ei(X1)|m < ∞.

Introduce a sequence of dependent Wiener processes {wi(t)}
with covariances

Ewk (t1)wk (t2) = min(t1, t2)
(
1 + 2

∞∑
j=1

Eek (X1)ek (Xj+1)
)
;

Ewk (t1)wl(t2) = min(t1, t2)
( ∞∑

j=1

Eek (X1)el(Xj+1)+
∞∑

j=1

Eel(X1)ek (Xj+1)
)
.
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Introduce the process

U(t) :=
∞∑

k1=1

...

∞∑
km=1

fk1...km tm/2Π∞j=1Hvj (i1,...,im)(t−1/2wj(t))
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results on the limiting behavior of U-statistics with
canonical kernels: history

(I)i.i.d. observations:
A. F. Ronzhin, 1986 (polynomial form)
Rubin H., Vitale R., 1980 (integral form)
Denker M., Grillenberger C., Kassel and Keller G., Heidelberg.,
1985 (integral form)
Dehling H., Denker M., Philipp W., 1987 (integral form)

(II) Stationary connected observations:
I.S. Borisov, N.V. Volodko (limit behavior, polynomial form)
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the introduced conditions

The stationary sequence Xi satisfies ϕ-mixing

sup
i

E|ei(X1)|m < ∞.

∞∑
k=1

ϕ(k)1/2 < ∞

f ∈ L2(Rm, F m) and
∞∑

k1=1
...

∞∑
km=1

|fk1...km | < ∞

(AC) The distribution of (Xj1 , ..., Xjm) is absolutely continuous
with respect to the distribution of (X ∗1 , ..., X ∗m)
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Theorem (Functional limit theorem for U-processes)
If the above conditions are met, then for every measurable
functional g(·) in D[0, 1], continuous at points of C[0, 1] in the
uniform topology, the sequence g(Un) converges in distribution
to the random variable g(U), where the random process U(t)
defined above and the corresponding multiple series converges
almost surely for each t ∈ [0, 1] and is a.s. continuous in t .
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Thank you for your attention!
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