XVII МАТЕМАТИЧЕСКАЯ ОЛИМПИАДА имени ЛЕОНАРДА ЭЙЛЕРА 3 (заключительный) этап, 24–27 марта 2025 г.

Второй день.

- **5.** Дано натуральное число n. Докажите, что при некотором натуральном m у числа m^3+m ровно один или ровно два различных простых делителя, больших n.
- **6.** По кругу расставлены 2025 ненулевых чисел. Может ли для любых пяти подряд идущих чисел a, b, c, d, e быть выполнено равенство ab+de=bd?
- **7.** Выпуклый пятиугольник *АВСDE* таков, что

$$\angle ACB = \angle CBD = \angle DCE = \angle BDC = 30^{\circ},$$

 $AB+BC+CD+DE = AD+BE.$

Чему может быть равен угол A этого пятиугольника?

8. В клетках таблицы 6×6 расставлены все натуральные числа от 1 до 36 (в каждой клетке стоит одно число). Назовем *уголком* фигуру, которая получается удалением одной клетки из квадрата 2×2 . Обозначим через m наименьшую сумму чисел в «уголке», а через M — наибольшее из m по всем возможным расстановкам чисел в таблице. Найдите M.